Jong-In Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076045/publications.pdf Version: 2024-02-01

IONIC-IN DADK

#	Article	IF	CITATIONS
1	Analogs of the Heat Shock Protein 70 Inhibitor MKT-077 Suppress Medullary Thyroid Carcinoma Cells. International Journal of Molecular Sciences, 2022, 23, 1063.	1.8	9
2	Mortalin depletion induces MEK/ERK-dependent and ANT/CypD-mediated death in vemurafenib-resistant B-RafV600E melanoma cells. Cancer Letters, 2021, 502, 25-33.	3.2	11
3	elF5A-Independent Role of DHPS in p21CIP1 and Cell Fate Regulation. International Journal of Molecular Sciences, 2021, 22, 13187.	1.8	1
4	Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. International Journal of Molecular Sciences, 2020, 21, 5436.	1.8	44
5	Dabrafenib and Trametinib in Patients With Tumors With <i>BRAF^{V600E}</i> Mutations: Results of the NCI-MATCH Trial Subprotocol H. Journal of Clinical Oncology, 2020, 38, 3895-3904.	0.8	145
6	Mortalin (HSPA9) facilitates <i>BRAF</i> -mutant tumor cell survival by suppressing ANT3-mediated mitochondrial membrane permeability. Science Signaling, 2020, 13, .	1.6	24
7	Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene, 2020, 39, 4257-4270.	2.6	22
8	Anticholestatic Effect of Bardoxolone Methyl on Hepatic Ischemia-reperfusion Injury in Rats. Transplantation Direct, 2020, 6, e584.	0.8	4
9	Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells. International Journal of Molecular Sciences, 2019, 20, 2069.	1.8	40
10	Treatment of Cells and Tissues with Chromate Maximizes Mitochondrial 2Fe2S EPR Signals. International Journal of Molecular Sciences, 2019, 20, 1143.	1.8	5
11	Dabrafenib and trametinib in patients with tumors with BRAF V600E/K mutations: Results from the molecular analysis for therapy choice (MATCH) Arm H Journal of Clinical Oncology, 2019, 37, 3002-3002.	0.8	10
12	A cellular threshold for active ERK1/2 levels determines Raf/MEK/ERK-mediated growth arrest versus death responses. Cellular Signalling, 2018, 42, 11-20.	1.7	22
13	Vandetanib and cabozantinib potentiate mitochondria-targeted agents to suppress medullary thyroid carcinoma cells. Cancer Biology and Therapy, 2017, 18, 473-483.	1.5	17
14	Steady-State Levels of Phosphorylated Mitogen-Activated Protein Kinase Kinase 1/2 Determined by Mortalin/HSPA9 and Protein Phosphatase 1 Alpha in <i>KRAS</i> and <i>BRAF</i> Tumor Cells. Molecular and Cellular Biology, 2017, 37, .	1.1	20
15	Suppression of B-Raf ^{V600E} melanoma cell survival by targeting mitochondria using triphenyl-phosphonium-conjugated nitroxide or ubiquinone. Cancer Biology and Therapy, 2017, 18, 106-114.	1.5	20
16	Pediatric Medullary Thyroid Carcinoma. Journal of Pediatric Oncology, 2016, 3, 29-37.	0.1	10
17	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
18	Selective Mitochondrial Uptake of MKT-077 Can Suppress Medullary Thyroid Carcinoma Cell SurvivalIn VitroandIn Vivo. Endocrinology and Metabolism, 2015, 30, 593.	1.3	17

Jong-In Park

#	Article	IF	CITATIONS
19	Sp1 regulates Raf/MEK/ERK-induced p21CIP1 transcription in TP53-mutated cancer cells. Cellular Signalling, 2015, 27, 479-486.	1.7	27
20	ERK1/2 can feedback-regulate cellular MEK1/2 levels. Cellular Signalling, 2015, 27, 1939-1948.	1.7	21
21	Active <scp>ERK</scp> 2 is sufficient to mediate growth arrest and differentiation signaling. FEBS Journal, 2015, 282, 1017-1030.	2.2	19
22	MEK1/2 Inhibitors: Molecular Activity and Resistance Mechanisms. Seminars in Oncology, 2015, 42, 849-862.	0.8	96
23	Phosphoinositide and Erk signaling pathways mediate activityâ€driven rodent olfactory sensory neuronal survival and stress mitigation. Journal of Neurochemistry, 2015, 134, 486-498.	2.1	14
24	The Role of STAT3 in Thyroid Cancer. Cancers, 2014, 6, 526-544.	1.7	27
25	Kinome sequencing reveals RET G691S polymorphism in human neuroendocrine lung cancer cell lines. Genes and Genomics, 2014, 36, 829-841.	0.5	15
26	Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels. Experimental Cell Research, 2014, 327, 340-352.	1.2	90
27	Growth arrest signaling of the Raf/MEK/ERK pathway in cancer. Frontiers in Biology, 2014, 9, 95-103.	0.7	44
28	Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice. Cancer Letters, 2013, 339, 144-151.	3.2	14
29	Mitochondria-Targeted Nitroxide, Mito-CP, Suppresses Medullary Thyroid Carcinoma Cell Survival In Vitro and In Vivo. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1529-1540.	1.8	44
30	AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion. Experimental Cell Research, 2013, 319, 1732-1743.	1.2	20
31	A Mortalin/HSPA9-Mediated Switch in Tumor-Suppressive Signaling of Raf/MEK/Extracellular Signal-Regulated Kinase. Molecular and Cellular Biology, 2013, 33, 4051-4067.	1.1	81
32	Autophagy sensitivity of neuroendocrine lung tumor cells. International Journal of Oncology, 2013, 43, 2031-2038.	1.4	15
33	The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Experimental Cell Research, 2011, 317, 2671-2682.	1.2	41
34	Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Letters, 2010, 297, 31-41.	3.2	43
35	Noncatalytic Function of ERK1/2 Can Promote Raf/MEK/ERK-mediated Growth Arrest Signaling. Journal of Biological Chemistry, 2009, 284, 33006-33018.	1.6	73
36	IFI16 Is an Essential Mediator of Growth Inhibition, but Not Differentiation, Induced by the Leukemia Inhibitory Factor/JAK/STAT Pathway in Medullary Thyroid Carcinoma Cells. Journal of Biological Chemistry, 2005, 280, 4913-4920.	1.6	48

#	Article	IF	CITATIONS
37	Interleukin-1β can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine, 2005, 29, 125-134.	1.4	32
38	GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nf1-heterozygous knockout mice. Experimental Cell Research, 2004, 303, 79-88.	1.2	15
39	The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway. Molecular and Cellular Biology, 2003, 23, 543-554.	1.1	119