Wouter Schutyser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1075929/publications.pdf Version: 2024-02-01

	26567	17546
15,248	56	121
citations	h-index	g-index
141	141	11232
docs citations	times ranked	citing authors
	citations 141	15,248 56 citations h-index 141 141

#	Article	IF	CITATIONS
1	Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 2018, 47, 852-908.	18.7	1,708
2	Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy and Environmental Science, 2015, 8, 1748-1763.	15.6	688
3	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	6.0	631
4	Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 2016, 45, 584-611.	18.7	619
5	Recent Advances in the Catalytic Conversion of Cellulose. ChemCatChem, 2011, 3, 82-94.	1.8	517
6	Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy and Environmental Science, 2017, 10, 1551-1557.	15.6	503
7	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	18.7	493
8	Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48, 2366-2421.	18.7	457
9	Hydrotalcite-like anionic clays in catalytic organic reactions. Catalysis Reviews - Science and Engineering, 2001, 43, 443-488.	5.7	449
10	Guidelines for performing lignin-first biorefining. Energy and Environmental Science, 2021, 14, 262-292.	15.6	416
11	The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature, 2016, 536, 317-321.	13.7	331
12	Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood. Chemical Communications, 2015, 51, 13158-13161.	2.2	298
13	Shape-selective zeolite catalysis for bioplastics production. Science, 2015, 349, 78-80.	6.0	289
14	Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chemistry, 2010, 12, 1560.	4.6	286
15	Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chemical Reviews, 2018, 118, 2718-2768.	23.0	263
16	Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al ₂ O ₃ catalyst pellets during lignin-first fractionation. Green Chemistry, 2017, 19, 3313-3326.	4.6	251
17	Spectroscopic Definition of the Copper Active Sites in Mordenite: Selective Methane Oxidation. Journal of the American Chemical Society, 2015, 137, 6383-6392.	6.6	243
18	Productive sugar isomerization with highly active Sn in dealuminated \hat{I}^2 zeolites. Green Chemistry, 2013, 15, 2777.	4.6	232

#	Article	IF	CITATIONS
19	Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catalysis Science and Technology, 2011, 1, 714.	2.1	220
20	Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chemistry, 2015, 17, 5035-5045.	4.6	214
21	Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy and Environmental Science, 2011, 4, 3601.	15.6	208
22	Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy and Environmental Science, 2015, 8, 230-240.	15.6	202
23	Influence of Acidic (H ₃ PO ₄) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catalysis, 2016, 6, 2055-2066.	5.5	191
24	Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green Chemistry, 2012, 14, 1611.	4.6	177
25	Zeolite-catalysed conversion of C3 sugars to alkyl lactates. Green Chemistry, 2010, 12, 1083.	4.6	170
26	State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis. Advanced Materials, 2020, 32, e2004690.	11.1	168
27	Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chemistry, 2011, 13, 1175.	4.6	152
28	Heterogeneous catalysts for CO ₂ hydrogenation to formic acid/formate: from nanoscale to single atom. Energy and Environmental Science, 2021, 14, 1247-1285.	15.6	152
29	Selective Alkene Oxidation with H2O2 and a Heterogenized Mn Catalyst: Epoxidation and a New Entry to Vicinalcis-Diols. Angewandte Chemie - International Edition, 1999, 38, 980-983.	7.2	139
30	Selective Nickelâ€Catalyzed Conversion of Model and Ligninâ€Derived Phenolic Compounds to Cyclohexanoneâ€Based Polymer Building Blocks. ChemSusChem, 2015, 8, 1805-1818.	3.6	137
31	Tuning the Acid/Metal Balance of Carbon Nanofiber‣upported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose. ChemSusChem, 2012, 5, 1549-1558.	3.6	131
32	Silica–MOF Composites as a Stationary Phase in Liquid Chromatography. European Journal of Inorganic Chemistry, 2010, 2010, 3735-3738.	1.0	120
33	Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood. ACS Sustainable Chemistry and Engineering, 2016, 4, 6894-6904.	3.2	120
34	Revisiting alkaline aerobic lignin oxidation. Green Chemistry, 2018, 20, 3828-3844.	4.6	114
35	Catalytic lignocellulose biorefining in <i>n</i> -butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chemistry, 2018, 20, 4607-4619.	4.6	113
36	Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. Energy and Environmental Science, 2021, 14, 4147-4168.	15.6	106

#	Article	IF	CITATIONS
37	Metal Sulfide Photocatalysts for Lignocellulose Valorization. Advanced Materials, 2021, 33, e2007129.	11.1	106
38	Dielectric Barrier Discharge at Atmospheric Pressure as a Tool to Deposit Versatile Organic Coatings at Moderate Power Input. Plasma Processes and Polymers, 2007, 4, 145-157.	1.6	105
39	Alkylphenols to phenol and olefins by zeolite catalysis: a pathway to valorize raw and fossilized lignocellulose. Green Chemistry, 2016, 18, 297-306.	4.6	105
40	Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chemistry, 2017, 19, 2561-2570.	4.6	102
41	A Heterogeneous Tungsten Catalyst for Epoxidation of Terpenes and Tungsten-Catalyzed Synthesis of Acid-Sensitive Terpene Epoxides. Journal of Organic Chemistry, 1999, 64, 7267-7270.	1.7	99
42	An Inner-/Outer-Sphere Stabilized Sn Active Site in Î ² -Zeolite: Spectroscopic Evidence and Kinetic Consequences. ACS Catalysis, 2016, 6, 31-46.	5.5	89
43	Spectroscopic Identification of the α-Fe/α-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C–H Bond. Journal of the American Chemical Society, 2018, 140, 12021-12032.	6.6	83
44	Tailoring nanohybrids and nanocomposites for catalytic applications. Green Chemistry, 2013, 15, 1398.	4.6	82
45	Catalyst Design by NH ₄ OH Treatment of USY Zeolite. Advanced Functional Materials, 2015, 25, 7130-7144.	7.8	76
46	Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: Impact of acid properties and pore constraint. Applied Catalysis B: Environmental, 2018, 234, 117-129.	10.8	75
47	Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 376, 36.	3.0	75
48	Alkane production from biomass: chemo-, bio- and integrated catalytic approaches. Current Opinion in Chemical Biology, 2015, 29, 40-48.	2.8	74
49	Catalytic Gasâ€Phase Production of Lactide from Renewable Alkyl Lactates. Angewandte Chemie - International Edition, 2018, 57, 3074-3078.	7.2	71
50	Titania-Silica Catalysts for Lactide Production from Renewable Alkyl Lactates: Structure–Activity Relations. ACS Catalysis, 2018, 8, 8130-8139.	5.5	70
51	Selective Conversion of Lignin-Derivable 4-Alkylguaiacols to 4-Alkylcyclohexanols over Noble and Non-Noble-Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 5336-5346.	3.2	66
52	Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chemistry, 2018, 20, 1050-1058.	4.6	66
53	Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4565-4570.	3.3	66
54	Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. Topics in Current Chemistry, 2018, 376, 30.	3.0	66

#	Article	IF	CITATIONS
55	Cage effects control the mechanism of methane hydroxylation in zeolites. Science, 2021, 373, 327-331.	6.0	61
56	Propylphenol to Phenol and Propylene over Acidic Zeolites: Role of Shape Selectivity and Presence of Steam. ACS Catalysis, 2018, 8, 7861-7878.	5.5	59
57	Perspective on Overcoming Scale-Up Hurdles for the Reductive Catalytic Fractionation of Lignocellulose Biomass. Industrial & Engineering Chemistry Research, 2020, 59, 17035-17045.	1.8	59
58	Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nature Energy, 2018, 3, 969-977.	19.8	58
59	Second-Sphere Effects on Methane Hydroxylation in Cu-Zeolites. Journal of the American Chemical Society, 2018, 140, 9236-9243.	6.6	58
60	Substrate-Specificity of <i>Candida rugosa</i> Lipase and Its Industrial Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 15828-15844.	3.2	57
61	Kinetics of the Oxygenation of Unsaturated Organics with Singlet Oxygen Generated from H2O2by a Heterogeneous Molybdenum Catalyst. Journal of the American Chemical Society, 2007, 129, 6916-6926.	6.6	54
62	Molecular design of sulfonated hyperbranched poly(arylene oxindole)s for efficient cellulose conversion to levulinic acid. Green Chemistry, 2016, 18, 1694-1705.	4.6	53
63	Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chemistry, 2017, 19, 153-163.	4.6	53
64	Catalytic advancements in carboxylic acid ketonization and its perspectives on biomass valorisation. Applied Catalysis B: Environmental, 2021, 283, 119607.	10.8	52
65	Synthesis–Structure–Activity Relations in Fe-CHA for C–H Activation: Control of Al Distribution by Interzeolite Conversion. Chemistry of Materials, 2020, 32, 273-285.	3.2	51
66	Aerosol Route to TiO ₂ –SiO ₂ Catalysts with Tailored Pore Architecture and High Epoxidation Activity. Chemistry of Materials, 2019, 31, 1610-1619.	3.2	50
67	Protein Immobilization Using Atmosphericâ€Pressure Dielectricâ€Barrier Discharges: A Route to a Straightforward Manufacture of Bioactive Films. Plasma Processes and Polymers, 2008, 5, 186-191.	1.6	49
68	Complementing Vanillin and Cellulose Production by Oxidation of Lignocellulose with Stirring Control. ACS Sustainable Chemistry and Engineering, 2020, 8, 2361-2374.	3.2	49
69	Lowâ€Temperature Reductive Aminolysis of Carbohydrates to Diamines and Aminoalcohols by Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 14540-14544.	7.2	47
70	Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C ₂ Platform Molecule. Angewandte Chemie - International Edition, 2021, 60, 12204-12223.	7.2	47
71	Aromatics Production from Lignocellulosic Biomass: Shape Selective Dealkylation of Lignin-Derived Phenolics over Hierarchical ZSM-5. ACS Sustainable Chemistry and Engineering, 2020, 8, 8713-8722.	3.2	45
72	Spectroscopic Definition of a Highly Reactive Site in Cu-CHA for Selective Methane Oxidation: Tuning a Mono-μ-Oxo Dicopper(II) Active Site for Reactivity. Journal of the American Chemical Society, 2021, 143, 7531-7540.	6.6	44

#	Article	IF	CITATIONS
73	Solid Acids as Heterogeneous Support for Primary Amino Acidâ€Derived Diamines in Direct Asymmetric Aldol Reactions. Advanced Synthesis and Catalysis, 2011, 353, 725-732.	2.1	43
74	Bioâ€Acrylates Production: Recent Catalytic Advances and Perspectives of the Use of Lactic Acid and Their Derivates. ChemCatChem, 2019, 11, 180-201.	1.8	43
75	The role of pretreatment in the catalytic valorization of cellulose. Molecular Catalysis, 2020, 487, 110883.	1.0	43
76	Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions. Applied Catalysis B: Environmental, 2017, 206, 74-88.	10.8	42
77	Lignin-Based Additives for Improved Thermo-Oxidative Stability of Biolubricants. ACS Sustainable Chemistry and Engineering, 2021, 9, 12548-12559.	3.2	41
78	Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC A— GC – FID/MS. Green Chemistry, 2022, 24, 191-206.	4.6	41
79	Supported MoO _{<i>x</i>} and WO _{<i>x</i>} Solid Acids for Biomass Valorization: Interplay of Coordination Chemistry, Acidity, and Catalysis. ACS Catalysis, 2021, 11, 13603-13648.	5.5	38
80	Heterogeneous Enzyme Mimics Based on Zeolites and Layered Hydroxides. Cattech, 2002, 6, 14-29.	2.6	36
81	Snβ-zeolite catalyzed oxido-reduction cascade chemistry with biomass-derived molecules. Chemical Communications, 2016, 52, 6712-6715.	2.2	35
82	The importance of pretreatment and feedstock purity in the reductive splitting of (ligno)cellulose by metal supported USY zeolite. Green Chemistry, 2016, 18, 2095-2105.	4.6	35
83	Highly Dispersed Sn-beta Zeolites as Active Catalysts for Baeyer–Villiger Oxidation: The Role of Mobile, <i>In Situ</i> Sn(II)O Species in Solid-State Stannation. ACS Catalysis, 2021, 11, 5984-5998.	5.5	35
84	Pentanoic acid from \hat{I}^3 -valerolactone and formic acid using bifunctional catalysis. Green Chemistry, 2020, 22, 1171-1181.	4.6	33
85	CO2reverse selective mixed matrix membranes for H2purification by incorporation of carbon–silica fillers. Journal of Materials Chemistry A, 2013, 1, 945-953.	5.2	31
86	Zeolites as sustainable catalysts for the selective synthesis of renewable bisphenols from ligninâ€derived monomers. ChemSusChem, 2017, 10, 2249-2257.	3.6	31
87	BrÃnsted Acid Catalyzed Tandem Defunctionalization of Biorenewable Ferulic acid and Derivates into Bioâ€Catechol. Angewandte Chemie - International Edition, 2020, 59, 3063-3068.	7.2	31
88	Immobilized Grubbs catalysts on mesoporous silica materials: insight into support characteristics and their impact on catalytic activity and product selectivity. Catalysis Science and Technology, 2016, 6, 2580-2597.	2.1	30
89	Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C–C bonds under simulated solar light. Green Chemistry, 2021, 23, 10071-10078.	4.6	30
90	Miniaturized Layer-by-Layer Deposition of Metal–Organic Framework Coatings through Digital Microfluidics. Chemistry of Materials, 2013, 25, 1021-1023.	3.2	28

#	Article	IF	CITATIONS
91	Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chemistry, 2014, 16, 1999-2007.	4.6	28
92	Regioselective synthesis, isomerisation, <i>in vitro</i> oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers. Green Chemistry, 2019, 21, 6622-6633.	4.6	28
93	Low molecular weight and highly functional RCF lignin products as a full bisphenol a replacer in bio-based epoxy resins. Chemical Communications, 2021, 57, 5642-5645.	2.2	28
94	Efficient demethylation of aromatic methyl ethers with HCl in water. Green Chemistry, 2021, 23, 1995-2009.	4.6	28
95	Direct Asymmetric <i>syn</i> â€Aldol Reactions of Linear Aliphatic Ketones with Primary Amino Acidâ€Derived Diamines. Advanced Synthesis and Catalysis, 2010, 352, 2421-2426.	2.1	26
96	Bridging racemic lactate esters with stereoselective polylactic acid using commercial lipase catalysis. Green Chemistry, 2013, 15, 2817.	4.6	26
97	Reductive splitting of hemicellulose with stable ruthenium-loaded USY zeolites. Green Chemistry, 2016, 18, 5295-5304.	4.6	26
98	Induced Chirality in a Metal–Organic Framework by Postsynthetic Modification for Highly Selective Asymmetric Aldol Reactions. ChemCatChem, 2014, 6, 2211-2214.	1.8	25
99	Identification of α-Fe in High-Silica Zeolites on the Basis of ab Initio Electronic Structure Calculations. Inorganic Chemistry, 2017, 56, 10681-10690.	1.9	24
100	Towards Lignin-Derived Chemicals Using Atom-Efficient Catalytic Routes. Trends in Chemistry, 2020, 2, 898-913.	4.4	22
101	Catalytic Hydroconversion of 5â€HMF to Valueâ€Added Chemicals: Insights into the Role of Catalyst Properties and Feedstock Purity. ChemSusChem, 2022, 15, .	3.6	22
102	A High-Throughput Experimentation Study of the Synthesis of Lactates with Solid Acid Catalysts. Topics in Catalysis, 2010, 53, 77-85.	1.3	21
103	Boosting PLA melt strength by controlling the chirality of co-monomer incorporation. Chemical Science, 2021, 12, 5672-5681.	3.7	20
104	How Trace Impurities Can Strongly Affect the Hydroconversion of Biobased 5-Hydroxymethylfurfural?. ACS Catalysis, 2021, 11, 9204-9209.	5.5	19
105	Ligninâ€First Monomers to Catechol: Rational Cleavage of Câ^'O and Câ^'C Bonds over Zeolites. ChemSusChem, 2022, 15, .	3.6	19
106	Straightforward sustainability assessment of sugar-derived molecules from first-generation biomass. Current Opinion in Green and Sustainable Chemistry, 2018, 10, 11-20.	3.2	18
107	Catalytic Gasâ€Phase Production of Lactide from Renewable Alkyl Lactates. Angewandte Chemie, 2018, 130, 3128-3132.	1.6	18
108	Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Proceedings of the United States of America, 2018, 115, 12124-12129	3.3	17

#	Article	IF	CITATIONS
109	Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Conversion and Biorefinery, 2023, 13, 2029-2043.	2.9	17
110	Enhancing lignin depolymerization <i>via</i> a dithionite-assisted organosolv fractionation of birch sawdust. Green Chemistry, 2021, 23, 3268-3276.	4.6	13
111	Preparation of Pt on NaY zeolite catalysts for conversion of glycerol into 1,2-propanediol. Studies in Surface Science and Catalysis, 2010, 175, 771-774.	1.5	12
112	Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis. Chemical Reviews, 2022, 122, 12207-12243.	23.0	12
113	Lowâ€Temperature Reductive Aminolysis of Carbohydrates to Diamines and Aminoalcohols by Heterogeneous Catalysis. Angewandte Chemie, 2017, 129, 14732-14736.	1.6	11
114	Catalytic Gasâ€Phase Cyclization of Glycolate Esters: A Novel Route Toward Glycolideâ€Based Bioplastics. ChemCatChem, 2018, 10, 5649-5655.	1.8	10
115	Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. Topics in Current Chemistry Collections, 2020, , 53-68.	0.2	10
116	Tandem Reduction–Reoxidation Augments the Catalytic Activity of Sn-Beta Zeolites by Redispersion and Respeciation of SnO ₂ Clusters. Chemistry of Materials, 2021, 33, 9366-9381.	3.2	10
117	Potassium-Modified ZSM-5 Catalysts for Methyl Acrylate Formation from Methyl Lactate: The Impact of the Intrinsic Properties on Their Stability and Selectivity. ACS Sustainable Chemistry and Engineering, 2022, 10, 6196-6204.	3.2	10
118	Water-soluble sulfonated hyperbranched poly(arylene oxindole) catalysts as functional biomimics of cellulases. Chemical Communications, 2016, 52, 2756-2759.	2.2	9
119	Assessment of the environmental sustainability of solvent-less fatty acid ketonization to bio-based ketones for wax emulsion applications. Green Chemistry, 2021, 23, 7137-7161.	4.6	9
120	Conversion of Biomass to Chemicals. , 2016, , 371-431.		7
121	One-Pot Consecutive Reductive Amination Synthesis of Pharmaceuticals: From Biobased Glycolaldehyde to Hydroxychloroquine. ACS Sustainable Chemistry and Engineering, 2022, 10, 6503-6508.	3.2	7
122	Fast and Selective Solvent-Free Branching of Unsaturated Fatty Acids with Hierarchical ZSM-5. ACS Sustainable Chemistry and Engineering, 2021, 9, 4357-4362.	3.2	6
123	A versatile A2+ B3approach to hyperbranched polyacenaphthenequinones. Journal of Polymer Science Part A, 2014, 52, 2596-2603.	2.5	5
124	Branching-First: Synthesizing C–C Skeletal Branched Biobased Chemicals from Sugars. ACS Sustainable Chemistry and Engineering, 2018, 6, 7940-7950.	3.2	5
125	Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C 2 Platform Molecule. Angewandte Chemie, 2021, 133, 12312-12331.	1.6	5
126	Reductive Catalytic Fractionation: From Waste Wood to Functional Phenolic Oligomers for Attractive, Value-Added Applications. ACS Symposium Series, 2021, , 37-60.	0.5	5

#	Article	IF	CITATIONS
127	Supported Molecular Catalysts. ChemCatChem, 2018, 10, 1663-1665.	1.8	4
128	Catalytic Technologies for Renewable Biomass Conversion. Advanced Sustainable Systems, 2020, 4, 2000171.	2.7	4
129	Hierarchical Zeolite: Catalyst Design by NH ₄ OH Treatment of USY Zeolite (Adv. Funct.) Tj ETQq1 1	0.784314 7.8	rg&T /Overlo
130	Preparation of Renewable Thiolâ€Yne "Click―Networks Based on Fractionated Lignin for Anticorrosive Protective Film Applications. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2
131	Optical encoding of luminescent carbon nanodots in confined spaces. Chemical Communications, 2021, 57, 11952-11955.	2.2	1
132	Establishing the Reaction Pathways of the Catalytic Conversion of Erythrulose to Sulphides of Alphaâ€Hydroxy Thioesters and Esters. ChemCatChem, 2022, 14, .	1.8	1
133	Branched Fatty Acids: The Potential of Zeolite Catalysis. ACS Sustainable Chemistry and Engineering, 0,	3.2	1