
Afshin Dadvand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10759035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards "green―electronic materials. α-Oligofurans as semiconductors. Chemical Communications, 2011, 47, 1976-1978.	2.2	196
2	Near-IR Photoresponse in New Up-Converting CdSe/NaYF ₄ :Yb,Er Nanoheterostructures. Journal of the American Chemical Society, 2010, 132, 8868-8869.	6.6	183
3	Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers. Chemistry of Materials, 2008, 20, 2484-2494.	3.2	144
4	Maximizing Fieldâ€Effect Mobility and Solidâ€6tate Luminescence in Organic Semiconductors. Angewandte Chemie - International Edition, 2012, 51, 3837-3841.	7.2	135
5	Halogen bonds in 2D supramolecular self-assembly of organic semiconductors. Nanoscale, 2012, 4, 5965.	2.8	120
6	Multiple NaNbO ₃ /Nb ₂ O ₅ Heterostructure Nanotubes: A New Class of Ferroelectric/Semiconductor Nanomaterials. Advanced Materials, 2010, 22, 1741-1745.	11.1	104
7	Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition. Journal of the American Chemical Society, 2020, 142, 8862-8870.	6.6	101
8	Oligofuran-containing molecules for organic electronics. Journal of Materials Chemistry C, 2013, 1, 4358.	2.7	77
9	A Two-Dimensional Poly(azatriangulene) Covalent Organic Framework with Semiconducting and Paramagnetic States. Journal of the American Chemical Society, 2020, 142, 2155-2160.	6.6	72
10	Inkjet printed thin and uniform dielectrics for capacitors and organic thin film transistors enabled by the coffee ring effect. Organic Electronics, 2016, 29, 114-119.	1.4	50
11	Environmentally stable light emitting field effect transistors based on 2-(4-pentylstyryl)tetracene. Journal of Materials Chemistry, 2008, 18, 158-161.	6.7	49
12	1,5-, 2,6- and 9,10-distyrylanthracenes as luminescent organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 2817.	2.7	48
13	Tuning the Electronic Properties of Poly(thienothiophene vinylene)s via Alkylsulfanyl and Alkylsulfonyl Substituents. Macromolecules, 2013, 46, 9231-9239.	2.2	37
14	Highly Emissive and Electrochemically Stable Thienylene Vinylene Oligomers and Copolymers: An Unusual Effect of Alkylsulfanyl Substituents. Advanced Functional Materials, 2010, 20, 1661-1669.	7.8	22
15	Direct writing of inkjet-printed short channel organic thin film transistors. Organic Electronics, 2017, 51, 485-489.	1.4	16
16	Band gap engineering of donor–acceptor co-crystals by complementary two-point hydrogen bonding. Materials Chemistry Frontiers, 2020, 4, 3669-3677.	3.2	14
17	Hydrogen Bonding Versus π-Stacking in Charge-Transfer Co-crystals. Crystal Growth and Design, 2021, 21, 2609-2613.	1.4	13
18	Inkjet printable and low annealing temperature gate-dielectric based on polymethylsilsesquioxane for flexible n-channel OFETs. Organic Electronics, 2016, 30, 213-218.	1.4	12

AFSHIN DADVAND

#	Article	IF	CITATIONS
19	Perfluoroalkyl-substitution versus electron-deficient building blocks in design of oligothiophene semiconductors. Journal of Materials Chemistry C, 2013, 1, 260-267.	2.7	9
20	Inkjet-printed unipolar n-type transistors on polymer substrates based on dicyanomethylene-substituted diketopyrrolopyrrole quinoidal compounds. Organic Electronics, 2018, 63, 267-275.	1.4	6
21	Improved Circuit Model Fitting of Inkjet-Printed OTFTs and a Proposal for Standardized Parameter Reporting. IEEE Transactions on Electron Devices, 2018, 65, 2485-2491.	1.6	5
22	Serendipitous Formation of Semiconducting Semi-Nindigo Indigoid by the Degradation of Diindolopyrrole. Journal of Organic Chemistry, 2020, 85, 5073-5077.	1.7	5
23	3,7-Bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6-dione Dicyanides with Engineered Side Chains for Unipolar n-Type Transistors. ACS Applied Electronic Materials, 2020, 2, 103-110.	2.0	1
24	Halogen bonding vs. π-stacking interactions in new bis(acenaphthylene)dione semiconductors. CrystEngComm, 0, , .	1.3	1
25	Generic Parameter Extraction of Inkjet-Printed OTFTs via Optimisation Using LTspice and MATLAB. , 2018, , .		0
26	Artificial Neural Network Modelling and Simulation of Organic Field Effect Transistors and Circuits. , 2019, , .		0