## A Z Moshfegh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10756104/publications.pdf Version: 2024-02-01



A 7 MOSHEECH

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nanoparticle catalysts. Journal Physics D: Applied Physics, 2009, 42, 233001.                                                                                                                                       | 2.8 | 196       |
| 2  | Hydrophilicity variation of WO3 thin films with annealing temperature. Journal Physics D: Applied Physics, 2007, 40, 1134-1137.                                                                                     | 2.8 | 89        |
| 3  | Physical characteristics of heat-treated nano-silvers dispersed in sol–gel silica matrix.<br>Nanotechnology, 2006, 17, 763-771.                                                                                     | 2.6 | 80        |
| 4  | Influence of Coloring Voltage and Thickness on Electrochromical Properties of e-beam Evaporated WO[sub 3] Thin Films. Journal of the Electrochemical Society, 2006, 153, E11.                                       | 2.9 | 59        |
| 5  | Photo-Degradation of Methelyne Blue over V2O5–TiO2 Nano-Porous Layers Synthesized by Micro Arc<br>Oxidation. Catalysis Letters, 2010, 134, 162-168.                                                                 | 2.6 | 59        |
| 6  | Visible photoenhanced current–voltage characteristics of Au : TiO <sub>2</sub> nanocomposite thin films as photoanodes. Journal Physics D: Applied Physics, 2010, 43, 105405.                                       | 2.8 | 45        |
| 7  | Low temperature self-agglomeration of metallic Ag nanoparticles on silica sol–gel thin films. Journal<br>Physics D: Applied Physics, 2008, 41, 195305.                                                              | 2.8 | 38        |
| 8  | Controlling surface statistical properties using bias voltage: Atomic force microscopy and stochastic analysis. Physical Review B, 2005, 71, .                                                                      | 3.2 | 34        |
| 9  | The effect of nanocrystalline tungsten oxide concentration on surface properties of dip-coated<br>hydrophilic WO3–SiO2thin films. Journal Physics D: Applied Physics, 2007, 40, 2089-2095.                          | 2.8 | 34        |
| 10 | Retardation of Ta silicidation by bias sputtering in Cu/Ta/Si(111) thin films. Journal Physics D: Applied Physics, 2001, 34, 2103-2108.                                                                             | 2.8 | 29        |
| 11 | Band engineering and charge separation in the<br>Mo <sub>1â^x</sub> W <sub>x</sub> S <sub>2</sub> /TiO <sub>2</sub> heterostructure by alloying: first<br>principle prediction. RSC Advances, 2015, 5, 28460-28466. | 3.6 | 29        |
| 12 | Persistent superhydrophilicity of sol–gel derived nanoporous silica thin films. Journal Physics D:<br>Applied Physics, 2009, 42, 025302.                                                                            | 2.8 | 27        |
| 13 | Simple Method to Synthesize Na <sub><i>x</i></sub> WO <sub>3</sub> Nanorods and Nanobelts.<br>Journal of Physical Chemistry C, 2009, 113, 13098-13102.                                                              | 3.1 | 26        |
| 14 | To What Extent Can Surface Morphology Influence the Photoelectrochemical Performance of Au:WO <sub>3</sub> Electrodes?. Journal of Physical Chemistry C, 2015, 119, 1271-1279.                                      | 3.1 | 23        |
| 15 | The effect of annealing temperature on the statistical properties of WO3surface. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P09017-P09017.                                                | 2.3 | 19        |
| 16 | Photo-enhanced catalytic decomposition of isopropanol on V2O5. Catalysis Letters, 1990, 4, 113-122.                                                                                                                 | 2.6 | 14        |
| 17 | Fabrication and surface stochastic analysis of enhanced photoelectrochemical activity of a tuneable MoS <sub>2</sub> –CdS thin film heterojunction. RSC Advances, 2016, 6, 16711-16719.                             | 3.6 | 14        |
| 18 | The first study on enhanced photoresponsivity of ZnO–TiO2 nanocomposite thin films by anodic polarization. Physical Chemistry Chemical Physics, 2011, 13, 4239.                                                     | 2.8 | 13        |

A Z MOSHFEGH

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A comparative studyof heatâ€treated Ag:SiO <sub>2</sub> nanocomposites synthesized by cosputtering<br>and solâ€gel methods. Surface and Interface Analysis, 2009, 41, 157-163.             | 1.8 | 12        |
| 20 | Combined highâ€pressure photocatalytic reactor–UHV system and sample transfer device. Review of<br>Scientific Instruments, 1988, 59, 2202-2205.                                            | 1.3 | 9         |
| 21 | Synthesis of W <sub>17</sub> O <sub>47</sub> nanothick plates with preferred orientation and their photocatalytic activity. Surface and Interface Analysis, 2011, 43, 1397-1402.           | 1.8 | 9         |
| 22 | Correlation between surface stochastic parameters and field emission property of NiO nanorods.<br>Journal Physics D: Applied Physics, 2014, 47, 115302.                                    | 2.8 | 7         |
| 23 | The barrier effect of a WxTa(1â^'x)nanolayer on formation of single-texture CoSi2on Si(1 0 0).<br>Semiconductor Science and Technology, 2006, 21, 1181-1192.                               | 2.0 | 5         |
| 24 | PVD GROWTH METHOD: PHYSICS AND TECHNOLOGY. , 2004, , .                                                                                                                                     |     | 4         |
| 25 | Summary Abstract: Photoenhancement of the catalytic methanation reaction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 820-821.                        | 2.1 | 3         |
| 26 | The Kinetic Study of H2S Formation and Desorption on the S/Pt(111) Surface by Computer Simulation.<br>Surface Review and Letters, 2003, 10, 745-750.                                       | 1.1 | 2         |
| 27 | PHOTOCATALYTIC CONVERSION OF METHANE INTO METHANOL OVER THE MoO3(010) SURFACE USING A SIMULATION METHOD. Surface Review and Letters, 2004, 11, 33-39.                                      | 1.1 | 2         |
| 28 | Co surface modification by bias sputtering in Cu/Co(Vb)/NiO/Si(100) magnetic multilayer structures.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1744-1747. | 0.8 | 2         |
| 29 | Crystallinity of CoSi <sub>2</sub> nanolayer grown by refractory metal interlayer and cap layer methods, lournal of Physics: Conference Series, 2008, 100, 042013.                         | 0.4 | 0         |