Susana López

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10756103/publications.pdf

Version: 2024-02-01

430874 501196 28 921 18 28 citations h-index g-index papers 34 34 34 886 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Determination of the fluid–absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar. American Mineralogist, 2001, 86, 1396-1403.	1.9	134
2	The suzuki reaction in stereocontrolled polyene synthesis: Retinol (vitamin A), its 9- and/or 13-demethyl analogs, and related 9-demethyl-dihydroretinoids. Tetrahedron, 1995, 51, 2435-2454.	1.9	83
3	Rh(III)-Catalyzed Tandem C–H Allylation and Oxidative Cyclization of Anilides: A New Entry to Indoles. Organic Letters, 2013, 15, 4576-4579.	4.6	79
4	Experimental and Theoretical Analysis of the Steric Tolerance of the Binding Site of Bacterioopsin with the Use of Side-Chain Methyl-Shifted Retinal Analogs. Journal of the American Chemical Society, 1995, 117, 8220-8231.	13.7	53
5	First Stereoselective Syntheses of (â^')-Siphonodiol and (â^')-Tetrahydrosiphonodiol, Bioactive Polyacetylenes from Marine Sponges. Journal of Organic Chemistry, 2005, 70, 6346-6352.	3.2	45
6	Synthesis of Retinals Fluorinated at Odd-Numbered Side-Chain Positions and of the Corresponding Fluorobacteriorhodopsins. Journal of Organic Chemistry, 1997, 62, 310-319.	3.2	43
7	Synthesis of Callyberynes A and B, Polyacetylenic Hydrocarbons from Marine Sponges. Organic Letters, 2003, 5, 3725-3728.	4.6	40
8	Synthesis of Marine Polyacetylenes Callyberynes Aâ^'C by Transition-Metal-Catalyzed Cross-Coupling Reactions to sp Centers. Journal of Organic Chemistry, 2006, 71, 2802-2810.	3.2	39
9	Structural Effects Affecting the Thermal Electrocyclic Ring Closure of Vinylallenes to Alkylidenecyclobutenes. Journal of the American Chemical Society, 1996, 118, 1881-1891.	13.7	36
10	Stereoselective synthesis of polyenic alarm pheromones of cephalaspidean molluscs. Tetrahedron, 1998, 54, 6793-6810.	1.9	35
11	Highly Convergent, Stereospecific Synthesis of 11-cis-Retinoids by Metal-Catalyzed Cross-Coupling Reactions of (Z)-1-Alkenylmetals. Journal of Organic Chemistry, 2007, 72, 9572-9581.	3.2	33
12	Hiyama Cross-Coupling Reaction in the Stereospecific Synthesis of Retinoids. Organic Letters, 2009, 11, 141-144.	4.6	33
13	Stereospecific synthesis of 9-demethylretinoids via palladium-catalyzed vinylboronic acid-vinyl iodide cross coupling. Tetrahedron Letters, 1992, 33, 6205-6208.	1.4	32
14	General Synthesis of Retinoids and Arotinoids via Palladium-Catalyzed Cross-Coupling of Boronic Acids with Electrophiles. Synthesis, 1995, 1995, 285-293.	2.3	31
15	Crossâ€Coupling Reactions of Organosilicon Compounds in the Stereocontrolled Synthesis of Retinoids. Chemistry - A European Journal, 2012, 18, 4401-4410.	3.3	31
16	Functionalized alkylidenecyclopentenes by acid-catalyzed electrocyclic ring closure of (2Z)-(di)vinylallene acetals. Tetrahedron Letters, 1997, 38, 7425-7428.	1.4	25
17	Stereocontrolled synthesis of all-(E)- and (8Z)-anhydroretinol. Tetrahedron Letters, 1998, 39, 5659-5662.	1.4	24
18	A Pericyclic Cascade to the Stereocontrolled Synthesis of 9-cis-Retinoids. Journal of Organic Chemistry, 2000, 65, 2696-2705.	3.2	23

#	Article	IF	CITATIONS
19	Torquoselectivity on the thermal electrocyclic ring closure of vinylallenes to alkylidenecyclobutenes. Tetrahedron Letters, 1995, 36, 4669-4672.	1.4	17
20	Synthesis of 11â€∢i>cisà€Retinoids by Hydrosilylation–Protodesilylation of an 11,12â€Didehydro Precursor: Easy Access to 11―and 12â€Mono―and 11,12â€Dideuteroretinoids. Chemistry - A European Journal, 2012, 18, 14100-14107.	, 3.3	14
21	Torquoselectivity in the Cationic Cyclopentannelation of (2Z)-Hexa-2,4,5-trienal Acetals. Chemistry - A European Journal, 2000, 6, 4021-4033.	3.3	13
22	Rh($<$ scp $>$ iii $<$ /scp $>$)-catalyzed [5+1] oxidative cycloaddition of arylguanidines with alkynes: a novel access to C4-disubstituted 1,4-dihydroquinazolin-2-amines. Chemical Communications, 2015, 51, 15157-15160.	4.1	13
23	Synthesis of N-Heteroaryl Retinals and their Artificial Bacteriorhodopsins. ChemBioChem, 2005, 6, 2078-2087.	2.6	12
24	Alkylidene-2H-pyrans by thermal electrocyclic ring closure of (2Z)-divinylallenals. Tetrahedron Letters, 1997, 38, 7421-7424.	1.4	11
25	Stereocontrolled Synthesis of Polyenic Ketones from Marine Opisthobranchs. Natural Product Research, 1995, 6, 127-132.	0.4	8
26	Stereoselective isomerization of 10-arylsulfenate-11,12-dehydroretinoids to 9-cis-retinoids. Tetrahedron Letters, 1998, 39, 4575-4578.	1.4	7
27	One-step chemoselective conversion of tetrahydropyranyl ethers to silyl-protected alcohols. RSC Advances, 2014, 4, 14475-14479.	3.6	6
28	Synthesis of C11-to-C14 methyl-shifted all-trans-retinal analogues and their activities on human aldo-keto reductases. Organic and Biomolecular Chemistry, 2020, 18, 4788-4801.	2.8	1