
Helena Pais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1075416/publications.pdf Version: 2024-02-01

HELENA DAIS

#	Article	IF	CITATIONS
1	Pasta phases in neutron stars under strong magnetic fields. Physical Review D, 2022, 105, .	4.7	4
2	Landau parameters and entrainment matrix of cold stellar matter: effect of the symmetry energy and strong magnetic fields. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 024.	5.4	0
3	Heavy baryons in hot stellar matter with light nuclei and hypernuclei. Physical Review C, 2022, 105, .	2.9	2
4	Critical properties of calibrated relativistic mean-field models for the transition to warm, nonhomogeneous nuclear and stellar matter. Physical Review C, 2021, 103, .	2.9	4
5	Strong magnetic fields: neutron stars with an extended inner crust. European Physical Journal A, 2021, 57, 1.	2.5	7
6	Nonequilibrium information entropy approach to ternary fission of actinides. Physical Review C, 2021, 103, .	2.9	4
7	Light hyperclusters and hyperons in low-density hot stellar matter. Physical Review C, 2021, 104, .	2.9	4
8	Binding energy shifts from heavy-ion experiments in a nuclear statistical equilibrium model. European Physical Journal A, 2021, 57, 1.	2.5	1
9	Light element (\$\$Z=1,2\$\$) production from spontaneous ternary fission of \$\$^{252}\$\$Cf. European Physical Journal A, 2020, 56, 1.	2.5	5
10	Neutron star inner crust: Effects of rotation and magnetic fields. Physical Review D, 2020, 102, .	4.7	8
11	Light clusters in warm stellar matter: calibrating the cluster couplings. European Physical Journal A, 2020, 56, 1.	2.5	7
12	Low Density In-Medium Effects on Light Clusters from Heavy-Ion Data. Physical Review Letters, 2020, 125, 012701.	7.8	22
13	Improved method for the experimental determination of in-medium effects from heavy-ion collisions. Journal of Physics G: Nuclear and Particle Physics, 2020, 47, 105204.	3.6	10
14	Isotopic equilibrium constants for very low-density and low-temperature nuclear matter. Physical Review C, 2020, 102, .	2.9	3
15	Full distribution of clusters with universal couplings and in-medium effects. Physical Review C, 2019, 99, .	2.9	21
16	Limiting magnetic field for minimal deformation of a magnetized neutron star. Astronomy and Astrophysics, 2019, 627, A61.	5.1	20
17	Hyperonic Stars and the Nuclear Symmetry Energy. Frontiers in Astronomy and Space Sciences, 2019, 6,	2.8	36
18	What do we learn about vector interactions from GW170817?. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 034002.	3.6	49

Helena Pais

#	Article	IF	CITATIONS
19	Light clusters in warm stellar matter: Explicit mass shifts and universal cluster-meson couplings. Physical Review C, 2018, 97, .	2.9	27
20	Light and heavy clusters in warm stellar matter. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	3.4	8
21	Stability of the neutron-proton-electron matter under strong magnetic fields: The covariant Vlasov approach. Physical Review C, 2018, 98, .	2.9	5
22	COMPARISON OF EQUATION OF STATE MODELS WITH DIFFERENT CLUSTER DISSOLUTION MECHANISMS. , 2017, , 95-132.		7
23	Light clusters and pasta phases in warm and dense nuclear matter. Physical Review C, 2017, 95, .	2.9	22
24	Crust-core transition of a neutron star: Effects of the symmetry energy and temperature under strong magnetic fields. Physical Review C, 2017, 95, .	2.9	19
25	Warm unstable asymmetric nuclear matter: Critical properties and the density dependence of the symmetry energy. Physical Review C, 2017, 95, .	2.9	13
26	Effect of strong magnetic fields on the crust-core transition and inner crust of neutron stars. Physical Review C, 2017, 95, .	2.9	22
27	Larger and more heterogeneous neutron star crusts: A result of strong magnetic fields. Physical Review C, 2016, 94, .	2.9	18
28	Vlasov formalism for extended relativistic mean field models: The crust-core transition and the stellar matter equation of state. Physical Review C, 2016, 94, .	2.9	63
29	Correlation of the neutron star crust-core properties with the slope of the symmetry energy and the lead skin thickness. Physical Review C, 2016, 93, .	2.9	26
30	Neutron stars: From the inner crust to the core with the (extended) Nambu–Jona-Lasinio model. Physical Review C, 2016, 93, .	2.9	18
31	Strong correlations of neutron star radii with the slopes of nuclear matter incompressibility and symmetry energy at saturation. Physical Review C, 2016, 94, .	2.9	66
32	Pasta phases in core-collapse supernova matter. Journal of Physics: Conference Series, 2016, 706, 042007.	0.4	0
33	Light clusters, pasta phases, and phase transitions in core-collapse supernova matter. Physical Review C, 2015, 91, .	2.9	43
34	Phase transitions in core-collapse supernova matter at sub-saturation densities. Physical Review C, 2014, 90, .	2.9	22
35	Equation of state and thickness of the inner crust of neutron stars. Physical Review C, 2014, 90, .	2.9	92
36	Exploring the Nuclear Pasta Phase in Core-Collapse Supernova Matter. Physical Review Letters, 2012, 109, 151101.	7.8	90

Helena Pais

#	Article	IF	CITATIONS
37	Dynamical instabilities of warm n pe matter: the \hat{l} meson effects. , 2010, , .		Ο
38	Dynamical properties of nuclear and stellar matter and the symmetry energy. Physical Review C, 2010, 82, . Dynamical instabilities of warms mml math xmlns:mml="http://www.w3.org/1998/Math/Math/Mi	2.9	21
39	dísplay="inline"> <mml:mrow><mml:mi mathvariant="italic">npe</mml:mi </mml:mrow> matter: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>²</mml:mi></mml:mrow>meson effects. Physical</mml:math 	2.9	18
40	Review C. 2009, 80. Quark–hadron phase transition in a neutron star under strong magnetic fields. Journal of Physics C: Nuclear and Particle Physics, 2009, 36, 115204.	3.6	71