List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10753911/publications.pdf Version: 2024-02-01

IOHN M ROONE

#	Article	lF	CITATIONS
1	An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV. Medical Physics, 1997, 24, 1661-1670.	3.0	584
2	Dedicated Breast CT: Radiation Dose and Image Quality Evaluation. Radiology, 2001, 221, 657-667.	7.3	464
3	Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography. Medical Physics, 1997, 24, 1863-1874.	3.0	393
4	CT Dose Index and Patient Dose: They Are <i>Not</i> the Same Thing. Radiology, 2011, 259, 311-316.	7.3	377
5	Dedicated Breast CT: Initial Clinical Experience. Radiology, 2008, 246, 725-733.	7.3	338
6	Pulmonary Embolism in Pregnant Patients: Fetal Radiation Dose with Helical CT. Radiology, 2002, 224, 487-492.	7.3	309
7	Glandular Breast Dose for Monoenergetic and High-Energy X-ray Beams: Monte Carlo Assessment. Radiology, 1999, 213, 23-37.	7.3	252
8	Dose Reduction in Pediatric CT: A Rational Approach. Radiology, 2003, 228, 352-360.	7.3	239
9	Contrast-enhanced Dedicated Breast CT: Initial Clinical Experience. Radiology, 2010, 256, 714-723.	7.3	198
10	The trouble with CTDI100. Medical Physics, 2007, 34, 1364-1371.	3.0	184
11	Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: Computer-fit values of Monte Carlo derived data. Medical Physics, 2002, 29, 869-875.	3.0	179
12	A geometric calibration method for cone beam CT systems. Medical Physics, 2006, 33, 1695-1706.	3.0	171
13	Comparison of x-ray cross sections for diagnostic and therapeutic medical physics. Medical Physics, 1996, 23, 1997-2005.	3.0	169
14	Small-Animal X-ray Dose from Micro-CT. Molecular Imaging, 2004, 3, 149-158.	1.4	168
15	Determination of the presampled MTF in computed tomography. Medical Physics, 2001, 28, 356-360.	3.0	147
16	Computed Tomography for Imaging the Breast. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 103-111.	2.7	139
17	Tungsten anode spectral model using interpolating cubic splines: Unfiltered xâ€ray spectra from 20 kV to 640 kV. Medical Physics, 2014, 41, 042101.	3.0	139
18	Scatter/primary in mammography: Comprehensive results. Medical Physics, 2000, 27, 2408-2416.	3.0	126

#	Article	IF	CITATIONS
19	High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. European Radiology, 2012, 22, 1-8.	4.5	119
20	Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner. Medical Physics, 2006, 34, 275-281.	3.0	115
21	Initial Characterization of a Dedicated Breast PET/CT Scanner During Human Imaging. Journal of Nuclear Medicine, 2009, 50, 1401-1408.	5.0	113
22	Technique factors and their relationship to radiation dose in pendant geometry breast CT. Medical Physics, 2005, 32, 3767-3776.	3.0	110
23	The effect of skin thickness determined using breast CT on mammographic dosimetry. Medical Physics, 2008, 35, 1199-1206.	3.0	103
24	An analytical model of the scattered radiation distribution in diagnostic radiology. Medical Physics, 1988, 15, 721-725.	3.0	97
25	Evaluation of x-ray scatter properties in a dedicated cone-beam breast CT scanner. Medical Physics, 2005, 32, 2967-2975.	3.0	97
26	Scatter/primary in mammography: Monte Carlo validation. Medical Physics, 2000, 27, 1818-1831.	3.0	94
27	Characterizing anatomical variability in breast CT images. Medical Physics, 2008, 35, 4685-4694.	3.0	92
28	Methodology for generating a 3D computerized breast phantom from empirical data. Medical Physics, 2009, 36, 3122-3131.	3.0	92
29	Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT: The Report of AAPM Task Group 220. AAPM Report, 2014, 2014, 6-23.	2.0	91
30	Radiation Exposure from CT Scans: How to Close Our Knowledge Gaps, Monitor and Safeguard Exposure—Proceedings and Recommendations of the Radiation Dose Summit, Sponsored by NIBIB, February 24–25, 2011. Radiology, 2012, 265, 544-554.	7.3	88
31	Analysis and correction of imperfections in the image intensifier-TV-digitizer imaging chain. Medical Physics, 1991, 18, 236-242.	3.0	87
32	An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Medical Physics, 1994, 21, 1541-1545.	3.0	83
33	A fully automated algorithm for the segmentation of lung fields on digital chest radiographic images. Medical Physics, 1995, 22, 183-191.	3.0	83
34	Dual-energy mammography: A detector analysis. Medical Physics, 1990, 17, 665-675.	3.0	80
35	Monte Carlo reference data sets for imaging research: Executive summary of the report of AAPM Research Committee Task Group 195. Medical Physics, 2015, 42, 5679-5691.	3.0	76
36	Monte Carlo simulation of the scattered radiation distribution in diagnostic radiology. Medical Physics, 1988, 15, 713-720.	3.0	72

#	Article	IF	CITATIONS
37	Overview of patient dosimetry in diagnostic radiology in the USA for the past. Medical Physics, 2008, 35, 5713-5728.	3.0	69
38	Constrained <formula formulatype="inline"><tex notation="TeX">\${m T}p{m V}\$</tex> </formula> Minimization for Enhanced Exploitation of Gradient Sparsity: Application to CT Image Reconstruction. IEEE Journal of Translational Engineering in Health and Medicine, 2014, 2, 1-18.	3.7	68
39	Breast CT: potential for breast cancer screening and diagnosis. Future Oncology, 2006, 2, 351-356.	2.4	67
40	Neural networks in radiology: An introduction and evaluation in a signal detection task. Medical Physics, 1990, 17, 234-241.	3.0	63
41	Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered. Medical Physics, 2015, 42, 6337-6348.	3.0	63
42	Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies. Medical Physics, 2012, 39, 1435-1441.	3.0	62
43	Grid and Slot Scan Scatter Reduction in Mammography: Comparison by Using Monte Carlo Techniques. Radiology, 2002, 222, 519-527.	7.3	60
44	3D-printed breast phantom for multi-purpose and multi-modality imaging. Quantitative Imaging in Medicine and Surgery, 2019, 9, 63-74.	2.0	58
45	Classification of breast computed tomography data. Medical Physics, 2008, 35, 1078-1086.	3.0	57
46	Method for evaluating bow tie filter angleâ€dependent attenuation in CT: Theory and simulation results. Medical Physics, 2010, 37, 40-48.	3.0	57
47	Cone beam CT dosimetry: A unified and selfâ€consistent approach including all scan modalities—With or without phantom motion. Medical Physics, 2010, 37, 2703-2718.	3.0	57
48	Dedicated Breast Computed Tomography: The Optimal Cross-Sectional Imaging Solution?. Radiologic Clinics of North America, 2010, 48, 1043-1054.	1.8	52
49	Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities. Physics in Medicine and Biology, 2013, 58, 1663-1681.	3.0	52
50	Generation and analysis of clinically relevant breast imaging x-ray spectra. Medical Physics, 2017, 44, 2148-2160.	3.0	51
51	Monte Carlo assessment of computed tomography dose to tissue adjacent to the scanned volume. Medical Physics, 2000, 27, 2393-2407.	3.0	49
52	Noise power properties of a coneâ€beam CT system for breast cancer detection. Medical Physics, 2008, 35, 5317-5327.	3.0	49
53	Experimental validation of a method characterizing bow tie filters in CT scanners using a realâ€ŧime dose probe. Medical Physics, 2011, 38, 1406-1415.	3.0	49
54	Evolution of spatial resolution in breast CT at UC Davis. Medical Physics, 2015, 42, 1973-1981.	3.0	49

#	Article	IF	CITATIONS
55	High-resolution ¹⁸ F-FDG PET/CT for assessing disease activity in rheumatoid and psoriatic arthritis: findings of a prospective pilot study. British Journal of Radiology, 2016, 89, 20160138.	2.2	49
56	Monte Carlo validation in diagnostic radiological imaging. Medical Physics, 2000, 27, 1294-1304.	3.0	48
57	PET characteristics of a dedicated breast PET/CT scanner prototype. Physics in Medicine and Biology, 2009, 54, 4273-4287.	3.0	48
58	Investigation of iterative image reconstruction in low-dose breast CT. Physics in Medicine and Biology, 2014, 59, 2659-2685.	3.0	47
59	Computed Tomography Use in a Tertiary Care University Hospital. Journal of the American College of Radiology, 2008, 5, 132-138.	1.8	46
60	Recognition of chest radiograph orientation for picture archiving and communications systems display using neural networks. Journal of Digital Imaging, 1992, 5, 190-193.	2.9	44
61	Simulation of Mechanical Compression of Breast Tissue. IEEE Transactions on Biomedical Engineering, 2007, 54, 1885-1891.	4.2	43
62	The three parameter equivalent spectra as an index of beam quality. Medical Physics, 1988, 15, 304-310.	3.0	42
63	Evaluation of scatter effects on image quality for breast tomosynthesis. Medical Physics, 2009, 36, 4425-4432.	3.0	42
64	An edge spread technique for measurement of the scatter-to-primary ratio in mammography. Medical Physics, 2000, 27, 845-853.	3.0	41
65	A Monte Carlo study of x-ray fluorescence in x-ray detectors. Medical Physics, 1999, 26, 905-916.	3.0	40
66	A comparison of mono- and poly-energetic x-ray beam performance for radiographic and fluoroscopic imaging. Medical Physics, 1994, 21, 1853-1863.	3.0	38
67	Monte Carlo evaluation of CTDIâ^ž in infinitely long cylinders of water, polyethylene and PMMA with diameters from 10mm to 500mm. Medical Physics, 2008, 35, 2424-2431.	3.0	38
68	Radiological interpretation 2020: Toward quantitative image assessment. Medical Physics, 2007, 34, 4173-4179.	3.0	37
69	Reply to "Comment on the â€~Report of AAPM TG 204: Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations'―[AAPM Report 204, 2011]. Medical Physics, 2012, 39, 4615-4616.	3.0	37
70	Small-Animal X-ray Dose from Micro-CT. Molecular Imaging, 2004, 3, 153535002004041.	1.4	36
71	Dose spread functions in computed tomography: A Monte Carlo study. Medical Physics, 2009, 36, 4547-4554.	3.0	36
72	Differentiation of ductal carcinoma in-situ from benign micro-calcifications by dedicated breast computed tomography. European Journal of Radiology, 2016, 85, 297-303.	2.6	35

#	Article	IF	CITATIONS
73	Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift. Current Rheumatology Reports, 2018, 20, 74.	4.7	35
74	Predictors of CT Radiation Dose and Their Effect on Patient Care: A Comprehensive Analysis Using Automated Data. Radiology, 2017, 282, 182-193.	7.3	34
75	Computer modeling of the spatial resolution properties of a dedicated breast CT system. Medical Physics, 2007, 34, 2059-2069.	3.0	33
76	Investigation of asphalt concrete rutting mechanisms by X-ray computed tomography imaging and micromechanical finite element modeling. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1027-1043.	3.1	32
77	Augmented Reality: Advances in Diagnostic Imaging. Multimodal Technologies and Interaction, 2017, 1, 29.	2.5	32
78	Methods for CT Automatic Exposure Control Protocol Translation Between Scanner Platforms. Journal of the American College of Radiology, 2014, 11, 285-291.	1.8	31
79	Dose Is Not Always What It Seems: Where Very Misleading Values Can Result From Volume CT Dose Index and Dose Length Product. Journal of the American College of Radiology, 2014, 11, 233-237.	1.8	28
80	Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions. Medical Physics, 2012, 39, 1818-1830.	3.0	28
81	Studies of a prototype linear stationary x-ray source for tomosynthesis imaging. Physics in Medicine and Biology, 2014, 59, 2393-2413.	3.0	27
82	Mean glandular dose coefficients (<i>D</i> _{<i>g</i>} <i>N</i>) for x-ray spectra used in contemporary breast imaging systems. Physics in Medicine and Biology, 2015, 60, 7179-7190.	3.0	27
83	An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Medical Physics, 2018, 45, 2542-2559.	3.0	27
84	Dataset of patientâ€derived digital breast phantoms for <i>in silico</i> studies in breast computed tomography, digital breast tomosynthesis, and digital mammography. Medical Physics, 2021, 48, 2682-2693.	3.0	26
85	Scatter correction algorithm for digitally acquired radiographs: Theory and results. Medical Physics, 1986, 13, 319-328.	3.0	25
86	A breast density index for digital mammograms based on radiologists' randing. Journal of Digital Imaging, 1998, 11, 101-115.	2.9	25
87	Analytical equations for CT dose profiles derived using a scatter kernel of Monte Carlo parentage with broad applicability to CT dosimetry problems. Medical Physics, 2011, 38, 4251-4264.	3.0	25
88	Radiation Dose Reduction for Augmentation Mammography. American Journal of Roentgenology, 2007, 188, 1414-1421.	2.2	24
89	Dedicated breast computed tomography: Volume image denoising via a partialâ€diffusion equation based technique. Medical Physics, 2008, 35, 1950-1958.	3.0	24
90	Nonâ€Gaussian statistical properties of breast images. Medical Physics, 2012, 39, 7121-7130.	3.0	24

#	Article	IF	CITATIONS
91	Kilovoltage Rotational External Beam Radiotherapy on a Breast Computed Tomography Platform: A Feasibility Study. International Journal of Radiation Oncology Biology Physics, 2012, 84, 533-539.	0.8	24
92	Al in medical physics: guidelines for publication. Medical Physics, 2021, 48, 4711-4714.	3.0	24
93	Parametrized x-ray absorption in diagnostic radiology from Monte Carlo calculations: Implications for x-ray detector design. Medical Physics, 1992, 19, 1467-1473.	3.0	23
94	A survey of fluoroscopic exposure rates: AAPM Task Group No. 11 Report. Medical Physics, 1993, 20, 789-794.	3.0	23
95	Experimentally determined spectral optimization for dedicated breast computed tomography. Medical Physics, 2011, 38, 646-655.	3.0	23
96	Level Set Segmentation of Breast Masses in Contrast-Enhanced Dedicated Breast CT and Evaluation of Stopping Criteria. Journal of Digital Imaging, 2014, 27, 237-247.	2.9	23
97	Monte Carlo evaluation of glandular dose in cone-beam X-ray computed tomography dedicated to the breast: Homogeneous and heterogeneous breast models. Physica Medica, 2018, 51, 99-107.	0.7	21
98	Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT. Medical Physics, 2012, 39, 7254-7261.	3.0	20
99	Performance assessment of a pendant-geometry CT scanner for breast cancer detection. , 2005, , .		19
100	Location and direction dependence in the 3D MTF for a highâ€resolution CT system. Medical Physics, 2021, 48, 2760-2771.	3.0	19
101	Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens. Medical Physics, 1997, 24, 279-285.	3.0	18
102	Segmentation of breast masses on dedicated breast computed tomography and three-dimensional breast ultrasound images. Journal of Medical Imaging, 2014, 1, 014501.	1.5	18
103	Average glandular dose coefficients for pendantâ€geometry breast <scp>CT</scp> using realistic breast phantoms. Medical Physics, 2017, 44, 5096-5105.	3.0	18
104	Equivalent spectra as a measure of beam quality. Medical Physics, 1986, 13, 861-868.	3.0	17
105	Development and Monte Carlo Analysis of Antiscatter Grids for Mammography. Technology in Cancer Research and Treatment, 2002, 1, 441-447.	1.9	17
106	Cassette-based Digital Mammography. Technology in Cancer Research and Treatment, 2004, 3, 413-427.	1.9	17
107	An X-ray Computed Tomography/Positron Emission Tomography System Designed Specifically for Breast Imaging. Technology in Cancer Research and Treatment, 2010, 9, 29-43.	1.9	16
108	Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT. Medical Physics, 2015, 42, 5479-5489.	3.0	16

#	Article	IF	CITATIONS
109	Sinusoidal modulation analysis for optical system MTF measurements. Medical Physics, 1996, 23, 1955-1963.	3.0	15
110	Mammography spectrum measurement using an x-ray diffraction device. Physics in Medicine and Biology, 1998, 43, 2569-2582.	3.0	15
111	Estimating the Relative Utility of Screening Mammography. Medical Decision Making, 2013, 33, 510-520.	2.4	15
112	Stationary table CT dosimetry and anomalous scanner-reported values of CTDIvol. Medical Physics, 2013, 41, 011907.	3.0	15
113	Updated breast <scp>CT</scp> dose coefficients (Dg <scp>N_{CT}</scp>) using patientâ€derived breast shapes and heterogeneous fibroglandular distributions. Medical Physics, 2019, 46, 1455-1466.	3.0	15
114	Shading artifact correction in breast CT using an interleaved deep learning segmentation and maximumâ€likelihood polynomial fitting approach. Medical Physics, 2019, 46, 3414-3430.	3.0	15
115	Conspicuity of suspicious breast lesions on contrast enhanced breast CT compared to digital breast tomosynthesis and mammography. British Journal of Radiology, 2019, 92, 20181034.	2.2	15
116	An Ideal Observer for a Model of X-Ray Imaging in Breast Parenchymal Tissue. Lecture Notes in Computer Science, 2008, , 393-400.	1.3	15
117	Patientâ€derived heterogeneous breast phantoms for advanced dosimetry in mammography and tomosynthesis. Medical Physics, 2022, 49, 5423-5438.	3.0	15
118	Validation of synthesized normalâ€resolution image data generated from highâ€resolution acquisitions on a commercial CT scanner. Medical Physics, 2020, 47, 4775-4785.	3.0	14
119	Effects of kV, filtration, dose, and object size on soft tissue and iodine contrast in dedicated breast CT. Medical Physics, 2020, 47, 2869-2880.	3.0	14
120	Lens coupling efficiency: Derivation and application under differing geometrical assumptions. Medical Physics, 1997, 24, 565-570.	3.0	13
121	Real-time dosimeter employed to evaluate the half-value layer in CT. Physics in Medicine and Biology, 2014, 59, 363-377.	3.0	13
122	Fibroglandular tissue distribution in the breast during mammography and tomosynthesis based on breast CT data: A patientâ€based characterization of the breast parenchyma. Medical Physics, 2021, 48, 1436-1447.	3.0	13
123	An Open Environment CT-US Fusion for Tissue Segmentation during Interventional Guidance. PLoS ONE, 2011, 6, e27372.	2.5	12
124	Development of a patient-specific two-compartment anthropomorphic breast phantom. Physics in Medicine and Biology, 2012, 57, 4293-4307.	3.0	12
125	Non-rigid registration of serial dedicated breast CT, longitudinal dedicated breast CT and PET/CT images using the diffeomorphic demons method. Physica Medica, 2014, 30, 713-717.	0.7	12
126	The Effect of Iodine-based Contrast Material on Radiation Dose at CT: It's Complicated. Radiology, 2017, 283, 624-627.	7.3	12

#	Article	IF	CITATIONS
127	Multiâ€marker quantitative radiomics for mass characterization in dedicated breast CT imaging. Medical Physics, 2021, 48, 313-328.	3.0	12
128	Computed tomography turns 50. Physics Today, 2021, 74, 34-40.	0.3	12
129	Anthropomorphic Physical Breast Phantom Based on Patient Breast CT Data: Preliminary Results. IFMBE Proceedings, 2020, , 367-374.	0.3	11
130	A Figure of Merit Comparison between Bremsstrahlung and Monoenergetic X-Ray Sources for Angiography. Journal of X-Ray Science and Technology, 1994, 4, 334-345.	1.0	10
131	A multiple detector array helical x-ray microtomography system for specimen imaging. Medical Physics, 1999, 26, 1708-1713.	3.0	10
132	Radiation Dose and Safety: Informatics Standards and Tools. Journal of the American College of Radiology, 2014, 11, 1286-1297.	1.8	10
133	Classification images for localization performance in rampâ€spectrum noise. Medical Physics, 2018, 45, 1970-1984.	3.0	10
134	Estimating a sizeâ€specific dose for helical head CT examinations using Monte Carlo simulation methods. Medical Physics, 2019, 46, 902-912.	3.0	10
135	Cone beam CT multisource configurations: evaluating image quality, scatter, and dose using phantom imaging and Monte Carlo simulations. Physics in Medicine and Biology, 2020, 65, 235032.	3.0	9
136	What Parameters Are Most Accurate in Predicting Appropriate Technique Factors for CT Scanning?. Radiology, 2005, 236, 377-378.	7.3	8
137	Characteristics of the PET Component of a Dedicated Breast PET/CT Scanner Prototype. , 2006, , .		8
138	Impact of lesion segmentation metrics on computer-aided diagnosis/detection in breast computed tomography. Journal of Medical Imaging, 2014, 1, 031012.	1.5	8
139	JOURNAL CLUB: Quantification of Fetal Dose Reduction if Abdominal CT Is Limited to the Top of the Iliac Crests in Pregnant Patients With Trauma. American Journal of Roentgenology, 2016, 206, 705-712.	2.2	8
140	Two-dimensional breast dosimetry improved using three-dimensional breast image data. Radiological Physics and Technology, 2017, 10, 129-141.	1.9	8
141	The Napoli-Varna-Davis project for virtual clinical trials in X-ray breast imaging. , 2019, , .		8
142	Evaluation of non-Gaussian statistical properties in virtual breast phantoms. Journal of Medical Imaging, 2019, 6, 1.	1.5	8
143	Comparisons of glandular breast dose between digital mammography, tomosynthesis and breast CT based on anthropomorphic patient-derived breast phantoms. Physica Medica, 2022, 97, 50-58.	0.7	8
144	Filter wheel equalization for chest radiography: A computer simulation. Medical Physics, 1995, 22, 1029-1037.	3.0	7

#	Article	IF	CITATIONS
145	Angiographic film substraction using a laser digitizer and computer processing. Journal of Digital Imaging, 1998, 11, 159-167.	2.9	7
146	A semiempirical linear model of indirect, flatâ€panel xâ€ray detectors. Medical Physics, 2012, 39, 2108-2118.	3.0	7
147	Three-dimensional computer generated breast phantom based on empirical data. Proceedings of SPIE, 2008, , .	0.8	6
148	Analysis of breast CT lesions using computer-aided diagnosis: an application of neural networks on extracted morphologic and texture features. Proceedings of SPIE, 2012, , .	0.8	6
149	Dedicated Breast CT: Screening Technique of the Future. Current Breast Cancer Reports, 2016, 8, 242-247.	1.0	6
150	Optimal reconstruction and quantitative image features for computerâ€aided diagnosis tools for breast <scp>CT</scp> . Medical Physics, 2017, 44, 1846-1856.	3.0	6
151	The Effect of Breast Density on Cancer Detection Performance in Mammography. Journal of Women's Imaging, 2001, 3, 122-128.	0.2	5
152	Dose equations for shift-variant CT acquisition modes using variable pitch, tube current, and aperture, and the meaning of their associated CTDIvol. Medical Physics, 2014, 41, 111906.	3.0	5
153	Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features. Journal of Medical Imaging, 2021, 8, 024501.	1.5	5
154	High-resolution μCT imaging for characterizing microcalcification detection performance in breast CT. Journal of Medical Imaging, 2021, 8, 052107.	1.5	5
155	Improving the spatial resolution characteristics of dedicated cone-beam breast CT technology. Proceedings of SPIE, 2014, , .	0.8	4
156	A Call for the Structured Physicist Report. Journal of the American College of Radiology, 2016, 13, 307-309.	1.8	4
157	Monte Carlo Basics for Radiation Dose Assessment in Diagnostic Radiology. Journal of the American College of Radiology, 2017, 14, 793-794.	1.8	4
158	Quantification of airway dimensions using a highâ€resolution CT scanner: A phantom study. Medical Physics, 2021, 48, 5874-5883.	3.0	4
159	Neutrosophic segmentation of breast lesions for dedicated breast computed tomography. Journal of Medical Imaging, 2018, 5, 1.	1.5	4
160	Multi-x-ray source array for stationary tomosynthesisor multi-cone angle cone beam CT. , 2019, , .		4
161	Scattered Energy Deposition Under Shielding. Investigative Radiology, 1988, 23, 627-631.	6.2	3
162	Multimodality high resolution wrist imaging for monitoring response to therapy in rheumatoid arthritis: Instrumentation and techniques. , 2008, , .		3

#	Article	IF	CITATIONS
163	NPS comparison of anatomical noise characteristics in mammography, tomosynthesis, and breast CT images using power law metrics. , 2011, , .		3
164	Comparative Statistical Properties ofÂExpected Utility and Area Under theÂROC Curve for Laboratory Studies of Observer Performance inÂScreening Mammography. Academic Radiology, 2014, 21, 481-490.	2.5	3
165	Contrast-enhanced dedicated breast CT detection of invasive breast cancer preceding mammographic diagnosis. Radiology Case Reports, 2015, 10, 936.	0.6	3
166	Greetings from the new Medical Physics editorial team. Medical Physics, 2021, 48, 1-2.	3.0	3
167	A prototype Multi-X-ray-source array (MXA) for digital breast tomosynthesis. Physics in Medicine and Biology, 2020, 65, 235033.	3.0	3
168	Dedicated Breast CT for Breast Cancer Screening. AIP Conference Proceedings, 2003, , .	0.4	2
169	Fast arbitrary-slice CT reconstruction with GPUs. , 2007, , .		2
170	Computerized 3D breast phantom with enhanced high-resolution detail. Proceedings of SPIE, 2009, , .	0.8	2
171	A preliminary investigation of reduced-view image reconstruction from low dose breast CT data. Proceedings of SPIE, 2012, , .	0.8	2
172	Lack of agreement between radiologists: implications for image-based model observers. Journal of Medical Imaging, 2017, 4, 025502.	1.5	2
173	Theory, method, and test tools for determination of 3D MTF characteristics in coneâ€beam CT. Medical Physics, 2021, 48, 2772-2789.	3.0	2
174	Mammography dose estimates do not reflect any specific patient's breast dose. European Journal of Radiology, 2020, 131, 109216.	2.6	2
175	Determining Sensitivity of Mammography from Screening Data, Cancer Incidence, and Receiver-Operating Characteristic Curve Parameters. Medical Decision Making, 2002, 22, 228-237.	2.4	2
176	Higher-order scene statistics of breast images. Proceedings of SPIE, 2009, , .	0.8	1
177	Evaluation of the additive noise of a flat panel detector and its effect on cone-beam CT applications. Proceedings of SPIE, 2009, , .	0.8	1
178	A utility/cost analysis of breast cancer risk prediction algorithms. , 2016, 9787, .		1
179	Phantom-based standardization of CT angiography images for spot sign detection. Neuroradiology, 2017, 59, 839-844.	2.2	1
180	Neutrosophic segmentation of breast lesions for dedicated breast CT. Proceedings of SPIE, 2017, , .	0.8	1

#	Article	IF	CITATIONS
181	Relationship between computer segmentation performance and computer classification performance in breast CT: A simulation study using RGI segmentation and LDA classification. Medical Physics, 2018, 45, 3650-3656.	3.0	1
182	A new editorial model for <i>Medical Physics</i> . Medical Physics, 2021, 48, 539-541.	3.0	1
183	Ideal Observer Comparison between Tomographic and Projection x-Ray Images of the Breast. Lecture Notes in Computer Science, 2010, , 591-597.	1.3	1
184	Numerically estimating rock frame properties of a mixed calcite and dolomite hand sample using computed tomography (CT). , 2019, , .		1
185	Breast Cancer Screening using a Dedicated Breast CT Scanner: A Feasibility Study. , 2003, , 6-11.		1
186	Multisource x-ray system for artifact reduction in dedicated breast CT. , 2018, , .		1
187	Human observer templates for lesion discrimination tasks. , 2020, 11316, .		1
188	Augmented Reality Imaging System: 3D Viewing of a Breast Cancer. Journal of Nature and Science, 2016, 2, .	1.1	1
189	Response to "Comment on â€~A Monte Carlo study of x-ray fluorescence in x-ray detectors' ―[Med. Phys.26, 2706 (1999)]. Medical Physics, 1999, 26, 2707-2707.	3.0	0
190	Evaluation of the spatial resolution of a dedicated breast CT system using computer simulation. , 2007, , .		0
191	A preliminary study of image reconstruction from low-dose data in dedicated breast CT. , 2011, , .		Ο
192	Optimization-based image reconstruction from low-dose patient breast CT Data. , 2013, , .		0
193	Fast, robust dynamic field-of-view adjustment for iterative reconstruction of dedicated breast CT. , 2013, , .		0
194	Unfiltered Monte Carlo-based tungsten anode spectral model from 20 to 640 kV. Proceedings of SPIE, 2014, , .	0.8	0
195	High resolution microcalcification signal profiles for dedicated breast CT. , 2020, 11312, .		0
196	New abstract guidelines for <i>Medical Physics</i> . Medical Physics, 2021, 48, 5583-5583.	3.0	0
197	The Size-specific Dose Estimate in CT Is Accurate across X-Ray Tube Potential: Why That Should Matter to the Practicing Radiologist. Radiology, 2022, , 212801.	7.3	Ο