
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10752555/publications.pdf Version: 2024-02-01

Ηιροςμι Διικι

#	Article	IF	CITATIONS
1	Up-conversion superfluorescence induced by abrupt truncation of coherent field and plasmonic nanocavity. Journal of Chemical Physics, 2019, 151, 224307.	1.2	2
2	Biexciton relaxation associated with dissociation into a surface polariton pair in semiconductor films. Physical Review B, 2018, 97, .	1.1	0
3	Cross-circularly polarized two-exciton states in one to three dimensions. Journal of Chemical Physics, 2015, 142, 104110.	1.2	1
4	Conditions for stronger field enhancement of semiconductor bowtie nanoantennas. Optics Letters, 2015, 40, 1695.	1.7	4
5	Up-Converted Luminescence of a Two-Level Molecule with Population Inversion. Journal of the Physical Society of Japan, 2014, 83, 093401.	0.7	2
6	Simulation method for resonant light scattering of exciton confined to arbitrary geometry. Optics Express, 2014, 22, 9450.	1.7	2
7	Large and well-defined Rabi splitting in a semiconductor nanogap cavity. Optics Express, 2014, 22, 22470.	1.7	7
8	Rapid calculation method for Frenkel-type two-exciton states in one to three dimensions. Journal of Chemical Physics, 2014, 141, 034110.	1.2	1
9	Entangled-photon generation from a quantum dot in a microcavity through pulsed laser irradiation. Physical Review A, 2014, 89, .	1.0	3
10	Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nature Photonics, 2013, 7, 550-554.	15.6	143
11	Model of Finite-Momentum Excitons Driven by Surface Plasmons in Photoexcited Carbon Nanotubes Covered by Gold Metal Films. Physical Review Letters, 2013, 110, 257401.	2.9	7
12	Calculation Method for Exciton Wavefunctions with Electron–Hole Exchange Interaction: Application to Carbon Nanotubes. Journal of the Physical Society of Japan, 2013, 82, 054701.	0.7	6
13	Entangled Photon Generation from a Quantum Dot in Microcavity in a Strong Coupling Regime. The Review of Laser Engineering, 2013, 41, 492.	0.0	0
14	Exciton states and optical properties of carbon nanotubes. Journal of Physics Condensed Matter, 2012, 24, 483001.	0.7	12
15	A method for rapid calculation of twoâ€exciton states. Physica Status Solidi (B): Basic Research, 2011, 248, 452-455.	0.7	2
16	Light squeezing via a biexciton in a semiconductor microcavity. Physical Review B, 2011, 83, .	1.1	8
17	Large electron-hole exchange interaction of carbon nanotubes. Journal of Physics: Conference Series, 2010, 210, 012049.	0.3	3
18	Electron-hole asymmetry in single-walled carbon nanotubes probed by direct observation of transverse quasidark excitons. Physical Review B, 2010, 81, .	1.1	17

#	Article	IF	CITATIONS
19	Theory of Radiation Force on Carbon Nanotubes. Japanese Journal of Applied Physics, 2010, 49, 02BB03.	0.8	0
20	Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: A theoretical study. Physical Review B, 2009, 80, .	1.1	24
21	Radiation force mediated by exciton of a carbon nanotube. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 65-68.	0.8	3
22	Entangled-photon generation from a quantum dot in cavity QED. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 276-279.	0.8	4
23	Degree of entanglement of photon pairs generated from Vâ€ŧype system in microcavity. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 395-398.	0.8	3
24	Cavity-assisted generation of entangled photons from a V-type three-level system. New Journal of Physics, 2009, 11, 033033.	1.2	14
25	Secondâ€order correlation function of entangled photons from a quantum dot in microcavity. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2469-2472.	0.8	0
26	Excitonic two-photon absorption in semiconducting carbon nanotubes within an effective-mass approximation. Physical Review B, 2008, 78, .	1.1	21
27	Biexcitonic cavity quantum electrodynamics effect on nonlinear spectra of a quantum dot. Journal of Applied Physics, 2008, 104, 123105.	1.1	5
28	General mechanism of optical nonlinearity enhancement by cavity QED. Physical Review B, 2008, 78, .	1.1	6
29	Entangled Photon Generation from a Single Quantum Dot in Microcavity. , 2007, , .		0
30	Entangled photon generation from a single quantum dot in microcavity. , 2007, , .		0
31	Entangled-Photon Generation in Biexcitonic Cavity QED. Journal of the Physical Society of Japan, 2007, 76, 053401.	0.7	42
32	Photon Blockade Effect on Entangled Photon Generation from a Quantum Dot in Microcavity. , 2007, ,		1
33	Entangled Photon Generation from a V-Type Atom in Microcavity. , 2007, , .		0
34	Cavity-QED effects on entangled photon generation from a quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 40, 371-374.	1.3	4
35	Vacuum-field Rabi splitting in semiconducting core-shell microsphere. Physical Review B, 2006, 73, .	1.1	3
36	Enhanced generation of entangled-photon pairs from a cavity system. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2440-2443.	0.8	7

#	Article	IF	CITATIONS
37	Cavity effect on generation of entangled-photon pairs from biexcitons. , 2006, , .		Ο
38	Validity of semiclassical treatment of optical response in cavity systems. Physical Review B, 2005, 71, .	1.1	2
39	Optimal Conditions for Achieving Strong Third-Order Nonlinearity in Semiconductor Cavities. Journal of the Physical Society of Japan, 2005, 74, 2929-2932.	0.7	2
40	Enhancement of the Kerr effect for a quantum dot in a cavity. Superlattices and Microstructures, 2003, 34, 213-217.	1.4	10
41	Magnetic-field effects on the optical spectra of a carbon nanotube. Physical Review B, 2002, 65, .	1.1	14
42	Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal. Physical Review B, 2002, 66, .	1.1	36
43	Magneto-optical spectra of carbon nanotubes: effect of Aharonov–Bohm flux on depolarization effect. Physica B: Condensed Matter, 2002, 323, 206-208.	1.3	1
44	Effect of carrier-induced Hall current on magneto-optical spectra of carbon nanotubes. Microelectronic Engineering, 2002, 63, 39-42.	1.1	0
45	OPTICAL RESPONSE OF A CONFINED EXCITON IN A SPHERE WITH THE EFFECTS OF LT SPLITTING AND BACKGROUND POLARIZATION: COMPARISON OF TWO DIFFERENT APPROACHES. International Journal of Modern Physics B, 2001, 15, 3619-3622.	1.0	2
46	Magnetic properties of nano-graphites at low temperature. Physica B: Condensed Matter, 2000, 280, 388-389.	1.3	23
47	Longitudinal and transverse components of excitons in a spherical quantum dot. Physical Review B, 2000, 62, 7402-7412.	1.1	26
48	Electronic and magnetic properties of nanographite ribbons. Physical Review B, 1999, 59, 8271-8282.	1.1	1,131
49	Behaviour of Single-Walled Carbon Nanotubes in Magnetic Fields. , 1999, , 63-75.		2
50	Carbon nanotubes as quantum wires on a cylinder surface. Solid State Communications, 1997, 102, 135-142.	0.9	18
51	Energy Bands of Carbon Nanotubes in Magnetic Fields. Journal of the Physical Society of Japan, 1996, 65, 505-514.	0.7	190
52	Lattice Distortion with Spatial Variation of Carbon Nanotubes in Magnetic Fields. Journal of the Physical Society of Japan, 1996, 65, 2976-2986.	0.7	31
53	Aharonov—Bohm effect on magnetic properties of carbon nanotubes. Physica B: Condensed Matter, 1996, 216, 358-361.	1.3	18
54	Carbon nanotubes: Effects of magnetic fields on lattice distortions. Physica B: Condensed Matter, 1996, 227, 342-345.	1.3	2

#	Article	IF	CITATIONS
55	Carbon Nanotubes: Optical Absorption in Aharonov-Bohm Flux. Japanese Journal of Applied Physics, 1995, 34, 107.	0.8	72
56	Lattice Distortion of Metallic Carbon Nanotubes Induced by Magnetic Fields. Journal of the Physical Society of Japan, 1995, 64, 260-267.	0.7	50
57	Magnetic Properties of Ensembles of Carbon Nanotubes. Journal of the Physical Society of Japan, 1995, 64, 4382-4391.	0.7	95
58	Magnetic Properties of Carbon Nanotubes. Journal of the Physical Society of Japan, 1994, 63, 4267-4267.	0.7	30
59	Aharonov-Bohm effect in carbon nanotubes. Physica B: Condensed Matter, 1994, 201, 349-352.	1.3	418
60	Lattice Instability in Metallic Carbon Nanotubes. Journal of the Physical Society of Japan, 1994, 63, 3036-3047.	0.7	80
61	Electronic States of Carbon Nanotubes. Journal of the Physical Society of Japan, 1993, 62, 1255-1266.	0.7	632
62	Magnetic Properties of Carbon Nanotubes. Journal of the Physical Society of Japan, 1993, 62, 2470-2480.	0.7	218