Javier Gil-Humanes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10751976/publications.pdf

Version: 2024-02-01

25 papers

2,942 citations

331538
21
h-index

24 g-index

25 all docs

25 docs citations

25 times ranked

2813 citing authors

#	Article	IF	Citations
1	A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. Plant Cell, 2017, 29, 1196-1217.	3.1	469
2	DNA Replicons for Plant Genome Engineering Â. Plant Cell, 2014, 26, 151-163.	3.1	464
3	Lowâ€gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16, 902-910.	4.1	455
4	Highâ€efficiency gene targeting in hexaploid wheat using <scp>DNA</scp> replicons and <scp>CRISPR</scp> /Cas9. Plant Journal, 2017, 89, 1251-1262.	2.8	305
5	Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2010, 17023-17028.	3.3	168
6	Pool of Resistance Mechanisms to Glyphosate in Digitaria insularis. Journal of Agricultural and Food Chemistry, 2012, 60, 615-622.	2.4	126
7	Reduced-Gliadin Wheat Bread: An Alternative to the Gluten-Free Diet for Consumers Suffering Gluten-Related Pathologies. PLoS ONE, 2014, 9, e90898.	1.1	93
8	Silencing of \hat{I}^3 -gliadins by RNA interference (RNAi) in bread wheat. Journal of Cereal Science, 2008, 48, 565-568.	1.8	90
9	Genome Engineering and Agriculture: Opportunities and Challenges. Progress in Molecular Biology and Translational Science, 2017, 149, 1-26.	0.9	88
10	Molecular and Immunological Characterization of Gluten Proteins Isolated from Oat Cultivars That Differ in Toxicity for Celiac Disease. PLoS ONE, 2012, 7, e48365.	1.1	81
11	Targeting of prolamins by <scp>RNA</scp> i in bread wheat: effectiveness of seven silencingâ€fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnology Journal, 2016, 14, 986-996.	4.1	77
12	Down-Regulating \hat{I}^3 -Gliadins in Bread Wheat Leads to Non-Specific Increases in Other Gluten Proteins and Has No Major Effect on Dough Gluten Strength. PLoS ONE, 2011, 6, e24754.	1.1	74
13	Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Molecular Biology, 2017, 95, 111-121.	2.0	71
14	The Shutdown of Celiac Disease-Related Gliadin Epitopes in Bread Wheat by RNAi Provides Flours with Increased Stability and Better Tolerance to Over-Mixing. PLoS ONE, 2014, 9, e91931.	1.1	65
15	The Introgression of RNAi Silencing of \hat{I}^3 -Gliadins into Commercial Lines of Bread Wheat Changes the Mixing and Technological Properties of the Dough. PLoS ONE, 2012, 7, e45937.	1.1	50
16	Suppression of gliadins results in altered protein body morphology in wheat. Journal of Experimental Botany, 2011, 62, 4203-4213.	2.4	48
17	Significant down-regulation of î³-gliadins has minor effect on gluten and starch properties of bread wheat. Journal of Cereal Science, 2012, 56, 161-170.	1.8	48
18	Target site mutation and reduced translocation are present in a glyphosate-resistant Lolium multiflorum Lam. biotype from Spain. Plant Physiology and Biochemistry, 2012, 58, 16-22.	2.8	43

#	Article	IF	CITATIONS
19	Significant differences in coeliac immunotoxicity of barley varieties. Molecular Nutrition and Food Research, 2012, 56, 1697-1707.	1.5	35
20	Integration of promoters, inverted repeat sequences and proteomic data into a model for high silencing efficiency of coeliac disease related gliadins in bread wheat. BMC Plant Biology, 2013, 13, 136.	1.6	25
21	First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards. Agronomy for Sustainable Development, 2014, 34, 553-560.	2.2	25
22	MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants. G3: Genes, Genomes, Genetics, 2016, 6, 423-433.	0.8	23
23	Wheat rescued from fungal disease. Nature Biotechnology, 2014, 32, 886-887.	9.4	11
24	Characterization of $\hat{l} \pm / \hat{l}^2$ - and \hat{l}^3 -Gliadins in Commercial Varieties and Breeding Lines of Durum Wheat Using MALDI-TOF and A-PAGE Gels. Biochemical Genetics, 2011, 49, 735-747.	0.8	6
25	Genetic Transformation of Wheat: Advances in the Transformation Method and Applications for Obtaining Lines with Improved Bread-Making Quality and Low Toxicity in Relation to Celiac Disease. , 0,		2