Richard A Van Etten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10750460/publications.pdf Version: 2024-02-01

109 papers	14,476 citations	50170 46 h-index	33814 99 g-index
112	112	112	14298
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sequence and gene organization of mouse mitochondrial DNA. Cell, 1981, 26, 167-180.	13.5	1,771
2	Tyrosine Kinases as Targets for Cancer Therapy. New England Journal of Medicine, 2005, 353, 172-187.	13.9	1,255
3	Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 2006, 12, 908-916.	15.2	1,058
4	Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature, 2003, 424, 561-565.	13.7	731
5	Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 2007, 7, 332-344.	12.8	720
6	Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells. Journal of Clinical Investigation, 2009, 119, 1109-1123.	3.9	503
7	The P190, P210, and P230 Forms of the BCR/ABL Oncogene Induce a Similar Chronic Myeloid Leukemia–like Syndrome in Mice but Have Different Lymphoid Leukemogenic Activity. Journal of Experimental Medicine, 1999, 189, 1399-1412.	4.2	460
8	P210 and P190 Induce the Tyrosine Phosphorylation and DNA Binding Activity of Multiple Specific STAT Family Members. Journal of Biological Chemistry, 1996, 271, 31704-31710.	1.6	444
9	The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell, 1989, 58, 669-678.	13.5	423
10	Reversibility of acute B-cell leukaemia induced by BCR–ABL1. Nature Genetics, 2000, 24, 57-60.	9.4	397
11	Requirement for CD44 in homing and engraftment of BCR-ABL–expressing leukemic stem cells. Nature Medicine, 2006, 12, 1175-1180.	15.2	388
12	Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nature Genetics, 2004, 36, 453-461.	9.4	375
13	Cables Links Cdk5 and c-Abl and Facilitates Cdk5 Tyrosine Phosphorylation, Kinase Upregulation, and Neurite Outgrowth. Neuron, 2000, 26, 633-646.	3.8	367
14	Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 2002, 1, 479-492.	7.7	327
15	Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends in Cell Biology, 1999, 9, 179-186.	3.6	279
16	Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO Journal, 1998, 17, 5321-5333.	3.5	249
17	Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10700-10705.	3.3	249
18	c-Abl Has High Intrinsic Tyrosine Kinase Activity That Is Stimulated by Mutation of the Src Homology 3 Domain and by Autophosphorylation at Two Distinct Regulatory Tyrosines. Journal of Biological Chemistry, 2000, 275, 35631-35637.	1.6	233

#	Article	IF	CITATIONS
19	Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nature Medicine, 2013, 19, 1513-1517.	15.2	233
20	Molecular Pathogenesis and Therapy of Polycythemia Induced in Mice by JAK2 V617F. PLoS ONE, 2006, 1, e18.	1.1	206
21	A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7622-7627.	3.3	191
22	Conformational Control Inhibition of the BCR-ABL1 Tyrosine Kinase, Including the Gatekeeper T315I Mutant, by the Switch-Control Inhibitor DCC-2036. Cancer Cell, 2011, 19, 556-568.	7.7	172
23	Precise localization and nucleotide sequence of the two mouse mitochondrial rRNA genes and three immediately adjacent novel tRNA genes. Cell, 1980, 22, 157-170.	13.5	169
24	Tyrosine 394 Is Phosphorylated in Alzheimer's Paired Helical Filament Tau and in Fetal Tau with c-Abl as the Candidate Tyrosine Kinase. Journal of Neuroscience, 2005, 25, 6584-6593.	1.7	168
25	Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO Journal, 2002, 21, 3715-3727.	3.5	159
26	Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. OncoImmunology, 2013, 2, e26527.	2.1	154
27	Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2V617F in mice. Blood, 2012, 119, 3550-3560.	0.6	149
28	Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell, 2004, 5, 287-298.	7.7	145
29	Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nature Immunology, 2014, 15, 294-304.	7.0	136
30	Autoinhibition of Bcr-Abl through Its SH3 Domain. Molecular Cell, 2003, 12, 27-37.	4.5	134
31	The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood, 2000, 96, 664-670.	0.6	129
32	Right on target: eradicating leukemic stem cells. Trends in Molecular Medicine, 2007, 13, 470-481.	3.5	126
33	Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leukemia and Lymphoma, 2012, 53, 958-965.	0.6	124
34	Fatal myeloproliferation, induced in mice by TEL/PDGFβR expression, depends on PDGFβR tyrosines 579/581. Journal of Clinical Investigation, 2000, 105, 423-432.	3.9	106
35	Peroxiredoxin1 Prevents Excessive Endothelial Activation and Early Atherosclerosis. Circulation Research, 2008, 103, 598-605.	2.0	105
36	Dominant Negative Mutants Implicate STAT5 in Myeloid Cell Proliferation and Neutrophil Differentiation. Blood, 1999, 93, 4154-4166.	0.6	104

#	Article	IF	CITATIONS
37	Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood, 2014, 123, 1361-1371.	0.6	88
38	Focus on myeloproliferative diseases and myelodysplastic syndromes. Cancer Cell, 2004, 6, 547-552.	7.7	87
39	Mechanisms of transformation by the BCR-ABL oncogene: new perspectives in the post-imatinib era. Leukemia Research, 2004, 28, 21-28.	0.4	84
40	[40] Isolation of mammalian mitochondrial DNA and RNA and cloning of the mitochondrial genome. Methods in Enzymology, 1983, 97, 426-434.	0.4	79
41	Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood, 2001, 97, 1442-1450.	0.6	74
42	Imatinib mesylate radiosensitizes human glioblastoma cells through inhibition of platelet-derived growth factor receptor. Blood Cells, Molecules, and Diseases, 2005, 34, 181-185.	0.6	67
43	Superenhancer reprogramming drives a B-cell–epithelial transition and high-risk leukemia. Genes and Development, 2016, 30, 1971-1990.	2.7	59
44	Modulation of hepatic acute phase gene expression by epidermal growth factor and src protein tyrosine kinases in murine and human hepatic cells. Hepatology, 1999, 30, 682-697.	3.6	56
45	Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Oncogene, 2001, 20, 7744-7752.	2.6	49
46	Studying the pathogenesis of BCR–ABL+ leukemia in mice. Oncogene, 2002, 21, 8643-8651.	2.6	48
47	Oncogenic signaling: new insights and controversies from chronic myeloid leukemia. Journal of Experimental Medicine, 2007, 204, 461-465.	4.2	46
48	The Tel-Abl (ETV6-Abl) tyrosine kinase, product of complex (9;12) translocations in human leukemia, induces distinct myeloproliferative disease in mice. Blood, 2002, 99, 4568-4577.	0.6	44
49	A Direct Binding Site for Grb2 Contributes to Transformation and Leukemogenesis by the Tel-Abl (ETV6-Abl) Tyrosine Kinase. Molecular and Cellular Biology, 2004, 24, 4685-4695.	1.1	42
50	Autologous stem cell transplant recipients tolerate haploidentical relatedâ€donor natural killer cell–enriched infusions. Transfusion, 2013, 53, 412-418.	0.8	42
51	A multiâ€analyte cellâ€free DNA–based blood test for early detection of hepatocellular carcinoma. Hepatology Communications, 2022, 6, 1753-1763.	2.0	41
52	IKK-dependent activation of NF-κB contributes to myeloid and lymphoid leukemogenesis by BCR-ABL1. Blood, 2014, 123, 2401-2411.	0.6	40
53	Activation of c-Abl Kinase Activity and Transformation by a Chemical Inducer of Dimerization. Journal of Biological Chemistry, 2001, 276, 24372-24379.	1.6	36
54	c-Abl regulation: a tail of two lipids. Current Biology, 2003, 13, R608-R610.	1.8	33

#	Article	IF	CITATIONS
55	JAKing up hematopoietic proliferation. Cancer Cell, 2005, 7, 291-293.	7.7	31
56	Models of chronic myeloid leukemia. Current Oncology Reports, 2001, 3, 228-237.	1.8	29
57	Navigating the road toward optimal initial therapy for chronic myeloid leukemia. Current Opinion in Hematology, 2011, 18, 89-97.	1.2	28
58	Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies. Current Hematologic Malignancy Reports, 2013, 8, 71-80.	1.2	26
59	Alternative approaches to eradicating the malignant clone in chronic myeloid leukemia: tyrosine-kinase inhibitor combinations and beyond. Hematology American Society of Hematology Education Program, 2013, 2013, 189-200.	0.9	26
60	Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1. Blood, 2016, 127, 1803-1813.	0.6	24
61	Emerging therapeutic paradigms to target the dysregulated Janus kinase/signal transducer and activator of transcription pathway in hematological malignancies. Leukemia and Lymphoma, 2014, 55, 1968-1979.	0.6	23
62	Phase 1 dose-finding study of rebastinib (DCC-2036) in patients with relapsed chronic myeloid leukemia and acute myeloid leukemia. Haematologica, 2017, 102, 519-528.	1.7	22
63	Specific, targetable interactions with the microenvironment influence imatinib-resistant chronic myeloid leukemia. Leukemia, 2020, 34, 2087-2101.	3.3	22
64	Retroviral Transduction Models of Ph+ Leukemia: Advantages and Limitations for Modeling Human Hematological Malignancies in Mice. Blood Cells, Molecules, and Diseases, 2001, 27, 201-205.	0.6	21
65	The molecular pathogenesis of the philadelphia-positive leukemias: Implications for diagnosis and therapy. Cancer Treatment and Research, 1993, 64, 295-325.	0.2	20
66	Induction of myeloproliferative disease in mice by tyrosine kinase fusion oncogenes does not require granulocyte-macrophage colony-stimulating factor or interleukin-3. Blood, 2001, 97, 1435-1441.	0.6	18
67	The Ph-positive and Ph-negative myeloproliferative neoplasms: some topical pre-clinical and clinical issues. Haematologica, 2011, 96, 590-601.	1.7	17
68	Production of Replication-Defective Retrovirus by Transient Transfection of 293T cells. Journal of Visualized Experiments, 2007, , 550.	0.2	15
69	Interfering with leukemic stem cells. Nature Medicine, 2008, 14, 494-495.	15.2	13
70	DCC-2036: A Novel Switch Pocket Inhibitor of ABL Tyrosine Kinase with Therapeutic Efficacy Against BCR-ABL T315I In Vitro and in a CML Mouse Model Blood, 2007, 110, 463-463.	0.6	13
71	Pathogenesis and treatment of Ph+ leukemia: recent insights from mouse models. Current Opinion in Hematology, 2001, 8, 224-230.	1.2	12
72	Suppression of E-protein activity interferes with the development of BCR-ABL-mediated myeloproliferative disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12967-12972.	3.3	12

#	Article	IF	CITATIONS
73	Disease Progression in a Murine Model ofbcr/ablLeukemogenesis. Leukemia and Lymphoma, 1993, 11, 239-242.	0.6	11
74	Distinct graft-versus-leukemic stem cell effects of early or delayed donor leukocyte infusions in a mouse chronic myeloid leukemia model. Blood, 2012, 119, 273-284.	0.6	11
75	Adoptive immunotherapy of BCR-ABL–induced chronic myeloid leukemia–like myeloproliferative disease in a murine model. Blood, 2004, 104, 4236-4244.	0.6	9
76	Advances in the biology and therapy of chronic myeloid leukemia: proceedings from the 6th Post-ASH International Chronic Myeloid Leukemia and Myeloproliferative Neoplasms Workshop. Leukemia and Lymphoma, 2013, 54, 1151-1158.	0.6	9
77	The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood, 2000, 96, 664-670.	0.6	9
78	A Phase 1 Study of DCC-2036, a Novel Oral Inhibitor of BCR-ABL Kinase, in Patients with Philadelphia Chromosome Positive (Ph+) Leukemias Including Patients with T315I Mutation. Blood, 2011, 118, 601-601.	0.6	8
79	Malignant transformation by abl and BCR/ABL. Cancer Treatment and Research, 1993, 63, 167-192.	0.2	7
80	Dominant Negative Mutants Implicate STAT5 in Myeloid Cell Proliferation and Neutrophil Differentiation. Blood, 1999, 93, 4154-4166.	0.6	7
81	Modeling CML in mice: SpeCiaL expression is the key. Blood, 2005, 105, 6-7.	0.6	6
82	Murine Retroviral Bone Marrow Transplantation Models for the Study of Human Myeloproliferative Disorders. Current Protocols in Pharmacology, 2008, 43, Unit14.10.	4.0	6
83	Interrogating the molecular genetics of chronic myeloproliferative malignancies for personalized management in 2021. Haematologica, 2021, 106, 1787-1793.	1.7	5
84	A Selective and Potent Oral Inhibitor of the JAK2 Tyrosine Kinase Reverses Polycythemia and Leukocytosis Induced by JAK2 V617F in a Mouse Model Blood, 2007, 110, 557-557.	0.6	5
85	Transfection of NK Cells with mRNA or Lentivirus Expressing Chimeric Antigen Receptors Results in Highly Efficient Killing of Lymphoid Malignancies and Compares Favorably with Monoclonal Antibody-Directed ADCC Blood, 2009, 114, 1696-1696.	0.6	5
86	The erythropoietin receptor lends a Friendly hand. Blood, 2006, 107, 5-6.	0.6	4
87	New insights into the normal and leukemic stem cell niche: A timely review. Cytometry Part B - Clinical Cytometry, 2013, 84B, 5-6.	0.7	4
88	Contemporary insights into the pathogenesis and treatment of chronic myeloproliferative neoplasms. Leukemia and Lymphoma, 2016, 57, 1517-1526.	0.6	4
89	Molecular Pathogenesis of Polycythemia Induced in Mice by JAK2 V617F Blood, 2005, 106, 116-116.	0.6	4
90	Selectins and Their Ligands Are Required for Homing and Engraftment of BCR-ABL+ Leukemia-Initiating Cells Blood, 2005, 106, 697-697.	0.6	4

6

#	Article	IF	CITATIONS
91	A remarkABL new fusion oncogene in T-cell ALL. Blood, 2005, 105, 4547-4548.	0.6	2
92	BCL6: A Novel Target for Therapy of Ph+ B Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2011, 20, 3-5.	7.7	2
93	Distinct Leukemogenic Activity and Imatinib Responsiveness of a BCR-PFGFRα Fusion Tyrosine Kinase Blood, 2006, 108, 3634-3634.	0.6	1
94	Targeting Autophagy Potentiates Imatinib-Induced Cell Death in Philadelphia Positive Cells Including Primary CML Stem Cells Blood, 2008, 112, 1070-1070.	0.6	1
95	Mouse Models of Myeloproliferative Neoplasms and Their Use In Preclinical Drug Testing. Blood, 2010, 116, SCI-35-SCI-35.	0.6	1
96	Parathyroid Hormone-Induced Modulation of the Bone Marrow Microenvironment Reduces Leukemic Stem Cells in Murine Chronic Myelogenous-Leukemia-Like Disease Via a TGFbeta-Dependent Pathway. Blood, 2011, 118, 1670-1670.	0.6	1
97	Differential Regulation of Myeloid Leukemias by the Bone Marrow Microenvironment. Blood, 2012, 120, 1245-1245.	0.6	1
98	CD44 Is Selectively Required for the Homing and Engraftment of BCR-ABL-Expressing Leukemic Stem Cells Blood, 2006, 108, 743-743.	0.6	0
99	Oncogenic signaling: new insights and controversies from chronic myeloid leukemia. Journal of Cell Biology, 2007, 176, i14-i14.	2.3	Ο
100	A Chromatin-Associated Histone H3 Dementhylase Promotes the Immortalization of MEFs and the Cycling of HSC-Like Cells in Culture Blood, 2007, 110, 96-96.	0.6	0
101	Mouse Models of Myeloproliferative Disease Associated with Mutant JAK2 Tyrosine Kinase: Insights into Pathophysiology and Therapy. , 2008, , 1-20.		0
102	Distinct Gab2-Mediated Signaling Pathways Are Essential for Myeloid or Lymphoid Transformation and Leukemogenesis by BCR-ABL. Blood, 2008, 112, 570-570.	0.6	0
103	Essential Role for Stat5a/b in Myeloproliferative Neoplasms Induced by BCR-ABL1 and Jak2 V617F Blood, 2009, 114, 312-312.	0.6	0
104	Allogeneic NK Cell Therapy After Autologous Stem Cell Transplant: Results of a Phase I Study. Blood, 2010, 116, 4299-4299.	0.6	0
105	Distinct Roles for the NF-κB Pathway In Myeloid and Lymphoid Transformation and Leukemogenesis by BCR-ABL Blood, 2010, 116, 1225-1225.	0.6	Ο
106	Outcomes in Allogeneic Hematopoietic Stem Cell Transplant Patients ≥ 60 Years of Age with a Novel Reduced Intensity Conditioning Regimen Incorporating Extracorporeal Photopheresis,. Blood, 2011, 118, 4153-4153.	0.6	0
107	Targeting CXCR4 with Cell-Penetrating Pepducins Enhances Survival in Disseminated Lymphoma. Blood, 2011, 118, 4244-4244.	0.6	0
108	Ikaros Mutation Confers Integrin-Dependent Survival Of Pre-B Cells and Progression To Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1259-1259.	0.6	0

#	Article	IF	CITATIONS
109	BCR-ABL1+ Leukemic Stem Cells Are Dependent On Selectin-Ligand Interactions For Engraftment In The Bone Marrow Niche. Blood, 2013, 122, 2703-2703.	0.6	0