Samantha Mclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10750409/publications.pdf Version: 2024-02-01

SAMANTHA MCLEAN

#	Article	IF	CITATIONS
1	Accelerated long-term forgetting in children with temporal lobe epilepsy: A timescale investigation of material specificity and executive skills. Epilepsy and Behavior, 2022, 129, 108623.	1.7	4
2	Transcriptomic Analysis of the Activity and Mechanism of Action of a Ruthenium(II)-Based Antimicrobial That Induces Minimal Evolution of Pathogen Resistance. ACS Pharmacology and Translational Science, 2021, 4, 168-178.	4.9	11
3	Facial emotion perception and social competence in children (8 to 16†years old) with genetic generalized epilepsy and temporal lobe epilepsy. Epilepsy and Behavior, 2019, 100, 106301.	1.7	10
4	The Broad-Spectrum Antimicrobial Potential of [Mn(CO) ₄ (S ₂ CNMe(CH ₂ CO ₂ H))], a Water-Soluble CO-Releasing Molecule (CORM-401): Intracellular Accumulation, Transcriptomic and Statistical Analyses, and Membrane Polarization. Antioxidants and Redox Signaling, 2018, 28, 1286-1308.	5.4	22
5	Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance. Antioxidants and Redox Signaling, 2016, 24, 1013-1028.	5.4	36
6	CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant ofEscherichia coli. Antioxidants and Redox Signaling, 2015, 23, 148-162.	5.4	44
7	Analysis of transcript changes in a heme-deficient mutant of Escherichia coli in response to CORM-3 [Ru(CO)3Cl(glycinate)]. Genomics Data, 2015, 5, 231-234.	1.3	4
8	Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry. Microbiology (United Kingdom), 2014, 160, 2771-2779.	1.8	20
9	Introducing [Mn(CO)3(tpa-κ3N)]+ as a novel photoactivatable CO-releasing molecule with well-defined iCORM intermediates – synthesis, spectroscopy, and antibacterial activity. Dalton Transactions, 2014, 43, 9986.	3.3	80
10	Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase. Microbiology (United Kingdom), 2014, 160, 2045-2052.	1.8	33
11	Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo′' to inhibition by the carbon monoxide-releasing molecule, CORM-3. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1693-1703.	2.3	40
12	Analysis of the Bacterial Response to Ru(CO) ₃ Cl(Glycinate) (CORM-3) and the Inactivated Compound Identifies the Role Played by the Ruthenium Compound and Reveals Sulfur-Containing Species as a Major Target of CORM-3 Action. Antioxidants and Redox Signaling, 2013, 19, 1999-2012.	5.4	39
13	Nitrosothiols in Bacterial Pathogens and Pathogenesis. Antioxidants and Redox Signaling, 2013, 18, 309-322.	5.4	22
14	Sulfite species enhance carbon monoxide release from CO-releasing molecules: Implications for the deoxymyoglobin assay of activity. Analytical Biochemistry, 2012, 427, 36-40.	2.4	154
15	The Diversity of Microbial Responses to Nitric Oxide and Agents of Nitrosative Stress. Advances in Microbial Physiology, 2011, 59, 135-219.	2.4	116
16	KatG from <i>Salmonella</i> Typhimurium is a peroxynitritase. FEBS Letters, 2010, 584, 1628-1632.	2.8	20
17	Peroxynitrite Toxicity in Escherichia coli K12 Elicits Expression of Oxidative Stress Responses and Protein Nitration and Nitrosylation. Journal of Biological Chemistry, 2010, 285, 20724-20731.	3.4	54
18	Peroxynitrite stress is exacerbated by flavohaemoglobin-derived oxidative stress in Salmonella Typhimurium and is relieved by nitric oxide. Microbiology (United Kingdom), 2010, 156, 3556-3565.	1.8	18

#	Article	IF	CITATIONS
19	An enzyme-coupled continuous spectrophotometric assay for magnesium protoporphyrin IX methyltransferases. Analytical Biochemistry, 2009, 394, 223-228.	2.4	9
20	Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS Journal, 2005, 272, 4532-4539.	4.7	45