
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10748928/publications.pdf Version: 2024-02-01



CHIDANUR MAILIMDED

| #  | Article                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Adsorption behavior of diatomic gases with defected hexagonal boron nitride nanosheet: A DFT study.<br>Materials Today Communications, 2022, 31, 103813.                                                                                                                                        | 1.9  | 2         |
| 2  | Stabilizing Co, Ni and Cu on the h-BN surface: Using O O bond activation to probe their performance as single atom catalyst. Catalysis Today, 2021, 370, 75-82.                                                                                                                                 | 4.4  | 10        |
| 3  | Half metallicity and ferromagnetism of vanadium nitride nanoribbons: a first-principles study.<br>Physical Chemistry Chemical Physics, 2021, 23, 1127-1138.                                                                                                                                     | 2.8  | 14        |
| 4  | Probing Kinetics and Mechanism of Formation of Mixed Metallic Nanoparticles in a Polymer Membrane<br>by Galvanic Replacement between Two Immiscible Metals: Case Study of Nickel/Silver Nanoparticle<br>Synthesis. Langmuir, 2021, 37, 1637-1650.                                               | 3.5  | 4         |
| 5  | Atomically precise noble metal clusters (Ag10, Au10, Pd10 and Pt10) on alumina support: A comprehensive DFT study for oxidative catalysis. Applied Surface Science, 2021, 547, 149160.                                                                                                          | 6.1  | 7         |
| 6  | First-principles calculations to investigate electronic structure and transport properties of CrC<br>monolayers: A new horizon for spintronic application. Materials Science and Engineering B:<br>Solid-State Materials for Advanced Technology, 2021, 272, 115379.                            | 3.5  | 17        |
| 7  | Tuning of electron tunneling: a case study using BODIPY molecular layers. Physical Chemistry<br>Chemical Physics, 2020, 22, 2098-2104.                                                                                                                                                          | 2.8  | 6         |
| 8  | Charge reordering of MgO (1Â0Â0) surface by Sn cluster deposition: Implications for heterogeneous<br>catalysis. Applied Surface Science, 2020, 506, 144963.                                                                                                                                     | 6.1  | 3         |
| 9  | Revisiting galvanic replacement between silver nanoparticles and mercury(II) ions in a cellulose<br>membrane intended for optical assay application: Some new insights into silver-mercury interaction.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125140. | 4.7  | 6         |
| 10 | Stability and electronic properties of Au atom doped hexagonal boron nitride sheet on Ni(111) support:<br>Role of vacancy defects and supports towards single atom catalysis. Applied Surface Science, 2020, 515,<br>145978.                                                                    | 6.1  | 10        |
| 11 | First principles investigation of growth of small Pd-Ga bimetallic clusters on MgO(100) surface.<br>Journal of Applied Physics, 2019, 125, .                                                                                                                                                    | 2.5  | 1         |
| 12 | Bimetallic Agâ€Pt Subâ€nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts.<br>Angewandte Chemie, 2018, 130, 1223-1227.                                                                                                                                             | 2.0  | 3         |
| 13 | Role of size, composition and substrate in controlling the reactivity of α(0001)-Al 2 O 3 supported Ag n<br>Au m ( n+m = 2 â^' 4) alloy clusters for CO-oxidation: A comprehensive density functional study. Applied<br>Surface Science, 2018, 433, 756-764.                                    | 6.1  | 1         |
| 14 | Bimetallic Agâ€Pt Subâ€nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts.<br>Angewandte Chemie - International Edition, 2018, 57, 1209-1213.                                                                                                                      | 13.8 | 47        |
| 15 | Single atom alloy catalyst for SO <sub>3</sub> decomposition: enhancement of platinum catalyst's performance by Ag atom embedding. Nanoscale, 2018, 10, 20599-20610.                                                                                                                            | 5.6  | 24        |
| 16 | Activation of hydrogen iodide on silver tetramers: Role of confinement. Chemical Physics Letters, 2018, 705, 71-77.                                                                                                                                                                             | 2.6  | 2         |
| 17 | Microscopic Insights into Hydrogen Permeation Through a Model PdCu Membrane from<br>First-Principles Investigations. Journal of Physical Chemistry C, 2018, 122, 12920-12933.                                                                                                                   | 3.1  | 11        |
| 18 | Interaction of ammonia with semiconducting oxide surfaces. AIP Conference Proceedings, 2018, , .                                                                                                                                                                                                | 0.4  | 1         |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Alumina-supported sub-nanometer Pt <sub>10</sub> clusters: amorphization and role of the support material in a highly active CO oxidation catalyst. Journal of Materials Chemistry A, 2017, 5, 4923-4931.                                                   | 10.3 | 72        |
| 20 | Adsorption and decomposition of dimethyl methylphosphonate on pristine and mono-vacancy defected graphene: A first principles study. Applied Surface Science, 2017, 418, 318-327.                                                                           | 6.1  | 9         |
| 21 | Substrate induced reconstruction and activation of platinum clusters: A systematic DFT study. Applied Surface Science, 2017, 422, 1075-1081.                                                                                                                | 6.1  | 8         |
| 22 | Experimental and theoretical investigation of the high dielectric permittivity of tantalum doped titania. New Journal of Chemistry, 2017, 41, 13067-13075.                                                                                                  | 2.8  | 8         |
| 23 | Oxidation of Sn doped Cu cluster: A first principle study. AIP Conference Proceedings, 2017, , .                                                                                                                                                            | 0.4  | 0         |
| 24 | Structural and electronic properties of Sn substituted Cun (n=10, 13) clusters: A first principles study. AIP Conference Proceedings, 2017, , .                                                                                                             | 0.4  | 0         |
| 25 | ORR viability of alumina-supported platinum nanocluster: exploring oxidation behaviour by DFT.<br>Physical Chemistry Chemical Physics, 2017, 19, 19308-19315.                                                                                               | 2.8  | 15        |
| 26 | Catalytic behavior of â€~Pt-atomic chain encapsulated gold nanotube': A density functional study. AIP<br>Conference Proceedings, 2016, , .                                                                                                                  | 0.4  | 0         |
| 27 | Size induced modification of boron structural unit in YBO <sub>3</sub> : systematic investigation by experimental and theoretical methods. RSC Advances, 2016, 6, 64065-64071.                                                                              | 3.6  | 7         |
| 28 | Enhancement of dielectric constant in a niobium doped titania system: an experimental and theoretical study. New Journal of Chemistry, 2016, 40, 9526-9536.                                                                                                 | 2.8  | 26        |
| 29 | Intermolecular Aurophilic versus Intramolecular Auâ‹â‹N Secondary Interactions in Twoâ€Coordinate<br>Gold(I) Selenolate Complexes. ChemistrySelect, 2016, 1, 4131-4136.                                                                                     | 1.5  | 4         |
| 30 | Impact of van der Waal's interaction in the hybrid bilayer of silicene/SiC. RSC Advances, 2016, 6, 21948-21953.                                                                                                                                             | 3.6  | 11        |
| 31 | A novel design for porphyrin based D–s–A systems as molecular rectifiers. Chemical Science, 2016, 7,<br>1548-1557.                                                                                                                                          | 7.4  | 18        |
| 32 | The nonchalant magnetic ordering of vacancies in graphene. Carbon, 2015, 91, 358-369.                                                                                                                                                                       | 10.3 | 10        |
| 33 | Stable negative differential resistance in porphyrin based σ‑'π‑'σ monolayers grafted on silicon. RSC<br>Advances, 2015, 5, 50234-50244.                                                                                                                    | 3.6  | 7         |
| 34 | Platinum-Mediated Activation of Coordinated Organonitriles by Telluroethers in Tetrahydrofuran:<br>Isolation, Structural Characterization, and Density Functional Theory Analysis of Intermediate<br>Complexes. Inorganic Chemistry, 2015, 54, 11741-11750. | 4.0  | 4         |
| 35 | Evidence of a graphene-like Sn-sheet on a Au(111) substrate: electronic structure and transport<br>properties from first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 6705-6712.                                                 | 2.8  | 33        |
|    |                                                                                                                                                                                                                                                             |      |           |

An insight into local environment of lanthanide ions in Sr<sub>2</sub>SiO<sub>4</sub>:Ln (Ln = Sm,) Tj ETQq0 0.0 rgBT /Oyerlock 10  $\frac{2}{2.8}$ 

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ls mixed oxide of Sn x Ti 1â^x O 2 more effective for H 2 O decomposition? A first principles study.<br>Chemical Physics Letters, 2015, 633, 175-180.                                                                    | 2.6 | 4         |
| 38 | Diffusion of Cd and Te adatoms on CdTe(111) surfaces: A computational study using density functional theory. AIP Advances, 2015, 5, .                                                                                    | 1.3 | 5         |
| 39 | Silicon-pyrene/perylene hybrids as molecular rectifiers. Physical Chemistry Chemical Physics, 2015, 17, 1891-1899.                                                                                                       | 2.8 | 12        |
| 40 | Platinum atomic wire encapsulated in gold nanotubes: A first principle study. , 2014, , .                                                                                                                                |     | 0         |
| 41 | Do Agn (up to n = 8) clusters retain their identity on graphite? Insights from first-principles calculations including dispersion interactions. Journal of Chemical Physics, 2014, 140, 164705.                          | 3.0 | 13        |
| 42 | Influence of U doping on the growth behavior, electronic structure and magnetic properties of Pd n<br>(n = 1–12) clusters: a first principles study. European Physical Journal D, 2014, 68, 1.                           | 1.3 | 10        |
| 43 | The structural and electronic properties of Au <sub>n</sub> clusters on the<br>α-Al <sub>2</sub> O <sub>3</sub> (0001) surface: a first principles study. Physical Chemistry Chemical<br>Physics, 2014, 16, 26561-26569. | 2.8 | 14        |
| 44 | Comparison between cluster and slab model for Pt-group atom adsorption on gold and silver substrate. Surface Science, 2014, 630, 78-84.                                                                                  | 1.9 | 4         |
| 45 | Conformers of hydrogenated SiC honeycomb structure: A first principles study. AIP Advances, 2013, 3, 082136.                                                                                                             | 1.3 | 9         |
| 46 | Room temperature ammonia sensor based on jaw like bis-porphyrin molecules. Organic Electronics,<br>2013, 14, 1189-1196.                                                                                                  | 2.6 | 26        |
| 47 | Chair like NiAu6: Clusters assemblies and CO oxidation study by ab initio methods. Chemical Physics<br>Letters, 2013, 584, 108-112.                                                                                      | 2.6 | 13        |
| 48 | Adsorption of Eu atom at the TiO[sub 2] anatase (101) and rutile (110) surfaces. , 2013, , .                                                                                                                             |     | 1         |
| 49 | Are Deposited Bimetallic Clusters More Effective for SO <sub>3</sub> Decomposition? A Systematic Study Using First Principles Theory. Journal of Physical Chemistry C, 2012, 116, 25594-25601.                           | 3.1 | 10        |
| 50 | Influence of Sn interaction on the structural evolution of Au clusters: A first principles study.<br>Chemical Physics Letters, 2012, 543, 121-126.                                                                       | 2.6 | 9         |
| 51 | Adsorption of Small Palladium Clusters on the α-Al <sub>2</sub> O <sub>3</sub> (0001) Surface: A First<br>Principles Study. Journal of Physical Chemistry C, 2012, 116, 2863-2871.                                       | 3.1 | 20        |
| 52 | Hydrogen storage on Ti decorated SiC nanostructures: A first principles study. International Journal<br>of Hydrogen Energy, 2012, 37, 3733-3740.                                                                         | 7.1 | 39        |
| 53 | A first principle study of SO3 decomposition on silver nano-clusters: Implications toward hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 3645-3651.                                            | 7.1 | 6         |
| 54 | Structural and electronic properties of Ag–Pd bimetallic clusters on Al2O3 substrates: A first<br>principles study. Chemical Physics Letters, 2012, 537, 69-74.                                                          | 2.6 | 6         |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Oxidation of tin clusters: A first principles study. Chemical Physics Letters, 2011, 518, 70-75.                                                                                                                                | 2.6  | 3         |
| 56 | Study of Silicon-metal Interaction in Adsorption Process: An Ab-initio Approach. Materials Research<br>Society Symposia Proceedings, 2011, 1305, 1.                                                                             | 0.1  | 0         |
| 57 | M atom (M = Cu, Ag and Au) interaction with Ag and Au substrates: a first-principles study using cluster and slab models. Journal of Physics Condensed Matter, 2010, 22, 435001.                                                | 1.8  | 12        |
| 58 | Growth Pattern of Ag <sub><i>n</i></sub> ( <i>n</i> = 1â^'8) Clusters on the<br>α-Al <sub>2</sub> O <sub>3</sub> (0001) Surface: A First Principles Study. Langmuir, 2010, 26, 18776-18787.                                     | 3.5  | 27        |
| 59 | Microsolvation of sodium ion in acetonitrile clusters: Structure and energetic trend by first principle study. Computational and Theoretical Chemistry, 2009, 907, 22-28.                                                       | 1.5  | 6         |
| 60 | Oxidation of Al doped Au clusters: A first principles study. Journal of Chemical Physics, 2009, 130, 234309.                                                                                                                    | 3.0  | 20        |
| 61 | A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. Journal of Chemical Physics, 2009, 130, 124911.                                                                 | 3.0  | 251       |
| 62 | Adsorption of Thiols on the Pd(111) Surface: A First Principles Study. Langmuir, 2008, 24, 10838-10842.                                                                                                                         | 3.5  | 18        |
| 63 | CO Oxidation by BNâ^'Fullerene Cage: Effect of Impurity on the Chemical Reactivity. ACS Nano, 2008, 2, 1422-1428.                                                                                                               | 14.6 | 56        |
| 64 | Growth pattern and electronic properties of acetonitrile clusters: A density functional study.<br>Journal of Chemical Physics, 2008, 128, 214307.                                                                               | 3.0  | 17        |
| 65 | Structure and electronic properties of PbnM (M=C, Al, In, Mg, Sr, Ba, and Pb; n=8, 10, 12, and 14) clusters: Theoretical investigations based on first principles calculations. Journal of Chemical Physics, 2008, 128, 024308. | 3.0  | 31        |
| 66 | Structural Dependence of Magnetic Shielding Properties in Al <sub>4</sub> Li <sub>4</sub> Clusters.<br>Materials Transactions, 2008, 49, 2429-2436.                                                                             | 1.2  | 1         |
| 67 | Theoretical study of pure (Sin) and doped silicon (AlSin-1 and PSin-1) clusters (n=2–13) using ab initio<br>molecular orbital theory. Journal of Computational Methods in Sciences and Engineering, 2008, 7,<br>319-335.        | 0.2  | 2         |
| 68 | Atomic and electronic structures of neutral and charged Pbn clusters (n=2–15): Theoretical<br>investigation based on density functional theory. Journal of Chemical Physics, 2007, 126, 244704.                                 | 3.0  | 40        |
| 69 | Magnetic needles encapsulated inside (BN)36 cage: Prediction of atomic, electronic, and magnetic structure from first principle calculations. Applied Physics Letters, 2007, 91, 223112.                                        | 3.3  | 12        |
| 70 | Effect of Si adsorption on the atomic and electronic structure ofAunclusters(n=1–8)and the Au (111)<br>surface: First-principles calculations. Physical Review B, 2007, 75, .                                                   | 3.2  | 45        |
| 71 | Growth pattern and bonding trends in Pt (n= 2–13) clusters: Theoretical investigation based on first principle calculations. Chemical Physics Letters, 2007, 446, 374-379.                                                      | 2.6  | 77        |
| 72 | Structural and electronic properties ofAun(n=2–10)clusters and their interactions with single S<br>atoms:Ab initiomolecular dynamics simulations. Physical Review B, 2006, 73, .                                                | 3.2  | 73        |

| #  | Article                                                                                                                                                                                                                           | IF        | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 73 | Structure and bonding ofAu5M(M=Na, Mg, Al, Si, P, and S) clusters. Physical Review B, 2006, 74, .                                                                                                                                 | 3.2       | 113       |
| 74 | Energy level reordering and stability of MPb12 clusters: An interplay between geometry and electronic structure. Chemical Physics Letters, 2006, 430, 101-107.                                                                    | 2.6       | 23        |
| 75 | Theoretical study of aromaticity in inorganic tetramer clusters. Journal of Chemical Sciences, 2006, 118, 575-578.                                                                                                                | 1.5       | 21        |
| 76 | Structural and electronic properties of Sin, Sinâ^', and PSinâ^'1 clusters (2⩽n⩽13): Theoretical investigatic<br>based on ab initio molecular orbital theory. Journal of Chemical Physics, 2006, 125, 074303.                     | on<br>3.0 | 46        |
| 77 | Structure and bonding of tetramer clusters: Theoretical understanding of the aromaticity.<br>Computational and Theoretical Chemistry, 2005, 755, 187-194.                                                                         | 1.5       | 21        |
| 78 | Atomic and electronic structures of neutral and cationSnn(n=2–20)clusters: A comparative theoretical study with different exchange-correlation functionals. Physical Review B, 2005, 71, .                                        | 3.2       | 40        |
| 79 | Influence of Al substitution on the atomic and electronic structure of Si clusters by density functional theory and molecular dynamics simulations. Physical Review B, 2004, 69, .                                                | 3.2       | 39        |
| 80 | Stable fcc cage of III-IV mixed clusters with large energy gaps: Predictions based onab initiomolecular<br>dynamics simulations. Physical Review B, 2004, 70, .                                                                   | 3.2       | 5         |
| 81 | Structural and electronic properties of Si[sub n], Si[sub n]+], and AlSi[sub nâ^'1] (n=2–13) clusters:<br>Theoretical investigation based on ab initio molecular orbital theory. Journal of Chemical Physics,<br>2004, 121, 7756. | 3.0       | 58        |
| 82 | Effect of substituent groups on the electronic properties of a molecular device: an ab initio theoretical study. Computational and Theoretical Chemistry, 2004, 681, 65-69.                                                       | 1.5       | 21        |
| 83 | Impurity-doped Si10 cluster: Understanding the structural and electronic properties from first-principles calculations. Physical Review B, 2004, 70, .                                                                            | 3.2       | 43        |
| 84 | Molecular orbital analysis of frontier orbitals for molecular electronics: a case study of<br>unimolecular rectifier and photovoltaic cell. Science and Technology of Advanced Materials, 2003, 4,<br>377-382.                    | 6.1       | 8         |
| 85 | Theoretical study of the alkyl derivative C 37 H 50 N 4 O 4 molecule for use as a stable molecular rectifier: geometric and electronic structures. Computational Materials Science, 2003, 27, 161-165.                            | 3.0       | 15        |
| 86 | Thiophene thiol on the Au(111) surface: Size-dependent adsorption study. Journal of Chemical Physics, 2003, 118, 9809-9813.                                                                                                       | 3.0       | 25        |
| 87 | Interactions of a conjugated molecular diode with small metal clusters of Cu, Ag, and Au:<br>First-principles calculations. Journal of Chemical Physics, 2002, 117, 7669-7675.                                                    | 3.0       | 38        |
| 88 | Structural investigation of thiophene thiol adsorption on Au nanoclusters: Influence of back bonds.<br>Journal of Chemical Physics, 2002, 117, 2819-2822.                                                                         | 3.0       | 58        |
| 89 | Theoretical Analysis for a Molecular Resonant Tunneling Diode. Japanese Journal of Applied Physics, 2002, 41, 2770-2773.                                                                                                          | 1.5       | 9         |
| 90 | Molecular Resistance in a Molecular Diode:Â A Case Study of the Substituted Phenylethynyl Oligomer.<br>Journal of Physical Chemistry A, 2002, 106, 7911-7914.                                                                     | 2.5       | 20        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Fragmentation of small tin cluster ions (Snx+: x=4–20) in the low-energy collisions with a highly oriented pyrolytic graphite surface. Journal of Chemical Physics, 2002, 117, 4317-4322. | 3.0 | 29        |
| 92 | lonization potentials of small tin clusters: first principles calculations. Chemical Physics Letters, 2002, 356, 36-42.                                                                   | 2.6 | 17        |
| 93 | Bipyridinium Molecular Switch: <i>Ab-initio</i> Electronic Structure Calculation. Materials Transactions, 2001, 42, 2276-2278.                                                            | 1.2 | 4         |
| 94 | Multiphoton dissociation/ionisation of dimethyl sulphide (CH3SCH3) at 355 and 532 nm. Journal of Chemical Sciences, 2001, 113, 129-138.                                                   | 1.5 | 5         |
| 95 | Molecular Scale Rectifier:Â Theoretical Study. Journal of Physical Chemistry A, 2001, 105, 9454-9459.                                                                                     | 2.5 | 45        |