Dietmar Herndler-Brandstetter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10747687/publications.pdf

Version: 2024-02-01

42 papers 3,553 citations

218592 26 h-index 289141 40 g-index

42 all docs 42 docs citations

times ranked

42

6463 citing authors

#	Article	IF	CITATIONS
1	A GATA6-centred gene regulatory network involving HNFs and Î"Np63 controls plasticity and immune escape in pancreatic cancer. Gut, 2022, 71, 766-777.	6.1	38
2	Development of Humanized Mouse Models for Studying Human NK Cells in Health and Disease. Methods in Molecular Biology, 2022, 2463, 53-66.	0.4	8
3	Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir. Cell Host and Microbe, 2021, 29, 904-916.e6.	5.1	29
4	Structure–Activity Relationships of Triple-Action Platinum(IV) Prodrugs with Albumin-Binding Properties and Immunomodulating Ligands. Journal of Medicinal Chemistry, 2021, 64, 12132-12151.	2.9	34
5	IDO1+ Paneth cells promote immune escape of colorectal cancer. Communications Biology, 2020, 3, 252.	2.0	26
6	KLRG1+ Effector CD8+ T Cells Lose KLRG1, Differentiate into All Memory T Cell Lineages, and Convey Enhanced Protective Immunity. Immunity, 2018, 48, 716-729.e8.	6.6	300
7	IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Scientific Reports, 2017, 7, 3451.	1.6	107
8	Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9626-E9634.	3.3	138
9	Anti-SIRPÎ \pm antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10578-E10585.	3.3	223
10	Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity, 2016, 45, 1219-1231.	6.6	199
11	CD58/CD2 Is the Primary Costimulatory Pathway in Human CD28â^'CD8+ T Cells. Journal of Immunology, 2015, 195, 477-487.	0.4	79
12	Producing GM-CSF: a unique T helper subset?. Cell Research, 2014, 24, 1379-1380.	5.7	26
13	How the Aging Process Affects Our Immune System: Mechanisms, Consequences, and Perspectives for Intervention. International Perspectives on Aging, 2014, , 55-69.	0.2	0
14	Bone marrow T cells from the femur are similar to iliac crest derived cells in old age and represent a useful tool for studying the aged immune system. Immunity and Ageing, 2013, 10, 17.	1.8	9
15	How Aging Affects T Lymphocyte-Mediated Immunity. Frontiers in Immunology, 2013, 4, 296.	2.2	10
16	How to Define Biomarkers of Human T Cell Aging and Immunocompetence?. Frontiers in Immunology, 2013, 4, 136.	2.2	32
17	Upregulation of miRâ€24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8 ⁺ T cells sensitizing them to apoptotic cell death. Aging Cell, 2012, 11, 579-587.	3.0	78
18	Post-thymic regulation of CD5 levels in human memory T cells is inversely associated with the strength of responsiveness to interleukin-15. Human Immunology, 2011, 72, 627-631.	1.2	22

#	Article	IF	Citations
19	Persistent viral infections and immune aging. Ageing Research Reviews, 2011, 10, 362-369.	5.0	129
20	The Aging of the Adaptive Immune System. Current Immunology Reviews, 2011, 7, 94-103.	1.2	6
21	Gain and Loss of T Cell Subsets in Old Ageâ€"Age-Related Reshaping of the T Cell Repertoire. Journal of Clinical Immunology, 2011, 31, 137-146.	2.0	163
22	Report from the second cytomegalovirus and immunosenescence workshop. Immunity and Ageing, 2011, 8, 10.	1.8	35
23	Human Bone Marrow Hosts Polyfunctional Memory CD4+ and CD8+ T Cells with Close Contact to IL-15–Producing Cells. Journal of Immunology, 2011, 186, 6965-6971.	0.4	95
24	The impact of aging on memory T cell phenotype and function in the human bone marrow. Journal of Leukocyte Biology, 2011, 91, 197-205.	1.5	77
25	miRâ€17, miRâ€19b, miRâ€20a, and miRâ€106a are downâ€regulated in human aging. Aging Cell, 2010, 9, 291-	29 %. O	338
26	Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell, 2010, 9, 1084-1097.	3.0	57
27	Microarray analysis reveals similarity between CD8+CD28â^'T cells from young and elderly persons, but not of CD8+CD28+ T cells. Biogerontology, 2009, 10, 191-202.	2.0	40
28	CD28â^CD8+ T cells do not contain unique clonotypes and are therefore dispensable. Immunology Letters, 2009, 127, 27-32.	1.1	20
29	The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells. Biochemical Journal, 2009, 423, 363-374.	1.7	87
30	Age-related appearance of a CMV-specific high-avidity CD8+ T cell clonotype which does not occur in young adults. Immunity and Ageing, 2008, 5, 14.	1.8	39
31	The capacity of the TNF family members 4â€1BBL, OX40L, CD70, GITRL, CD30L and LIGHT to costimulate human T cells. European Journal of Immunology, 2008, 38, 2678-2688.	1.6	86
32	Non-regulatory CD8 ⁺ CD45RO ⁺ CD25 ⁺ T-lymphocytes may compensate for the loss of antigen-inexperienced CD8 ⁺ CD45RA ⁺ T-cells in old age. Biological Chemistry, 2008, 389, 561-568.	1.2	17
33	Biology of Immune Responses to Vaccines in Elderly Persons. Clinical Infectious Diseases, 2008, 46, 1078-1084.	2.9	354
34	Age-related changes in immunity: implications for vaccination in the elderly. Expert Reviews in Molecular Medicine, 2007, 9, 1-17.	1.6	131
35	CD4+�CD8+T cells in young and elderly humans. Comment on Macchia I, Gauduin MC, Kaur A, Johnson RP. Expression of CD8? identifies a distinct subset of effector memory CD4+T lymphocytes. Immunology 2006; 119:232?42. Immunology, 2007, 120, 292-294.	2.0	3
36	Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells. Free Radical Biology and Medicine, 2007, 43, 947-958.	1.3	82

#	Article	IF	CITATIONS
37	Immunodominant peptides from conserved influenza proteins $\hat{a} \in A$ tool for more efficient vaccination in the elderly?. Wiener Medizinische Wochenschrift, 2007, 157, 116-121.	0.5	10
38	The Efficacy of Vaccines to Prevent Infectious Diseases in the Elderly., 2007,, 106-120.		0
39	Immunizations in the elderly: do they live up to their promise?. Wiener Medizinische Wochenschrift, 2006, 156, 130-141.	0.5	22
40	Cytomegalovirus and the immune system in old age. Clinical and Applied Immunology Reviews, 2006, 6, 131-147.	0.4	5
41	CD25-Expressing CD8+T Cells Are Potent Memory Cells in Old Age. Journal of Immunology, 2005, 175, 1566-1574.	0.4	74
42	Long-Term Cytomegalovirus Infection Leads to Significant Changes in the Composition of the CD8+T-Cell Repertoire, Which May Be the Basis for an Imbalance in the Cytokine Production Profile in Elderly Persons. Journal of Virology, 2005, 79, 3675-3683.	1.5	325