Julietta U Frey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10747027/publications.pdf Version: 2024-02-01

ILLIETTA II EDEV

#	Article	IF	CITATIONS
1	Reward-Related fMRI Activation of Dopaminergic Midbrain Is Associated with Enhanced Hippocampus- Dependent Long-Term Memory Formation. Neuron, 2005, 45, 459-467.	8.1	579
2	Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiology of Learning and Memory, 2004, 82, 12-25.	1.9	291
3	The late maintenance of hippocampal LTP: Requirements, phases, †̃synaptic tagging', †late-associativityâ€ and implications. Neuropharmacology, 2007, 52, 24-40.	тм 4 . 1	280
4	Does cAMP Response Element-Binding Protein Have a Pivotal Role in Hippocampal Synaptic Plasticity and Hippocampus-Dependent Memory?. Journal of Neuroscience, 2003, 23, 6304-6314.	3.6	219
5	Identification of Compartment- and Process-Specific Molecules Required for "Synaptic Tagging" during Long-Term Potentiation and Long-Term Depression in Hippocampal CA1. Journal of Neuroscience, 2007, 27, 5068-5080.	3.6	177
6	Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12931-12936.	7.1	155
7	Stress-Related Modulation of Hippocampal Long-Term Potentiation in Rats: Involvement of Adrenal Steroid Receptors. Journal of Neuroscience, 2003, 23, 7281-7287.	3.6	142
8	Chapter 7 †Synaptic tagging' and †cross-tagging' and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Progress in Brain Research, 2008, 169, 117-143.	1.4	124
9	Activation of Midbrain Structures by Associative Novelty and the Formation of Explicit Memory in Humans. Learning and Memory, 2004, 11, 383-387.	1.3	105
10	Interfering with the Actin Network and Its Effect on Long-Term Potentiation and Synaptic Tagging in Hippocampal CA1 Neurons in Slices <i>In Vitro</i> . Journal of Neuroscience, 2009, 29, 12167-12173.	3.6	104
11	Long-Term Effects of Brief Acute Stress on Cellular Signaling and Hippocampal LTP. Journal of Neuroscience, 2006, 26, 3951-3958.	3.6	101
12	Bidirectional modulation of long-term potentiation by novelty-exploration in rat dentate gyrus. Neuroscience Letters, 2003, 344, 5-8.	2.1	97
13	Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro. Neuropharmacology, 2005, 49, 477-492.	4.1	96
14	Reinforcement of rat hippocampal LTP by holeboard training. Learning and Memory, 2005, 12, 165-171.	1.3	79
15	Novel Scenes Improve Recollection and Recall of Words. Journal of Cognitive Neuroscience, 2008, 20, 1250-1265.	2.3	73
16	Anisomycin inhibits the late maintenance of long-term depression in rat hippocampal slices in vitro. Neuroscience Letters, 2003, 338, 147-150.	2.1	65
17	Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 953-958.	7.1	60
18	Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala. Neurobiology of Learning and Memory, 2007, 88, 331-341.	1.9	58

JULIETTA U FREY

#	Article	IF	CITATIONS
19	Bidirectional Modulation of Hippocampal Long-Term Potentiation under Stress and No-Stress Conditions in Basolateral Amygdala-Lesioned and Intact Rats. Journal of Neuroscience, 2005, 25, 7393-7400.	3.6	55
20	Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression. PLoS ONE, 2011, 6, e17276.	2.5	46
21	LTP in cultured hippocampal–entorhinal cortex slices from young adult (P25-30) rats. Journal of Neuroscience Methods, 2003, 130, 19-32.	2.5	45
22	Long-term potentiation in the dentate gyrus in freely moving rats is reinforced by intraventricular application of norepinephrine, but not oxotremorine. Neurobiology of Learning and Memory, 2005, 83, 72-78.	1.9	42
23	Hormonal and monoamine signaling during reinforcement of hippocampal long-term potentiation and memory retrieval. Learning and Memory, 2007, 14, 160-166.	1.3	37
24	Protein kinase MÂ is essential for the induction and maintenance of dopamine-induced long-term potentiation in apical CA1 dendrites. Learning and Memory, 2010, 17, 605-611.	1.3	30
25	Functional Differences between and across Different Regions of the Apical Branch of Hippocampal CA1 Dendrites with Respect to Long-Term Depression Induction and Synaptic Cross-Tagging. Journal of Neuroscience, 2010, 30, 5118-5123.	3.6	25
26	Distinct single but not necessarily repeated tetanization is required to induce hippocampal late-LTP in the rat CA1: Figure 1 Learning and Memory, 2008, 15, 46-49.	1.3	24
27	Behavioral reinforcement of long-term potentiation in rat dentate gyrus in vivo is protein synthesis-dependent. Neuroscience Letters, 2003, 351, 56-58.	2.1	22
28	Emotional and cognitive reinforcement of rat hippocampal long-term potentiation by different learning paradigms. Neuron Glia Biology, 2004, 1, 253-261.	1.6	22
29	Cognitive and emotional information processing: protein synthesis and gene expression. Journal of Physiology, 2007, 584, 389-400.	2.9	20
30	Modulation of extracellular monoamine transmitter concentrations in the hippocampus after weak and strong tetanization of the perforant path in freely moving rats. Brain Research, 2009, 1273, 29-38.	2.2	16
31	Spatial learning in the holeboard impairs an early phase of long-term potentiation in the rat hippocampal CA1-region. Neurobiology of Learning and Memory, 2008, 89, 545-551.	1.9	11
32	The effect of acute swim stress and training in the water maze on hippocampal synaptic activity as well as plasticity in the dentate gyrus of freely moving rats: Revisiting swim-induced LTP reinforcement. Hippocampus, 2013, 23, 1291-1298.	1.9	11
33	Synaptic plasticity and the analysis of the field-EPSP as well as the population spike using separate recording electrodes in the dentate gyrus in freely moving rats. Journal of Neuroscience Methods, 2009, 184, 79-87.	2.5	10
34	Search for a two-input model for future investigations of â€~synaptic tagging' in freely moving animals in vivo. Journal of Neuroscience Methods, 2006, 152, 220-228.	2.5	6
35	Simultaneous recording of the field-EPSP as well as the population spike in the CA1 region in freely moving rats by using a fixed "double―recording electrode. Journal of Neuroscience Methods, 2010, 188, 1-6.	2.5	6
36	Stimulation of the nucleus raphe medialis modifies basal synaptic transmission at the dentate gyrus, but not long-term potentiation or its reinforcement by stimulation of the basolateral amygdala. Neuroscience Letters, 2009, 464, 179-183.	2.1	4