Ram Pyare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10746962/publications.pdf

Version: 2024-02-01

687363 642732 41 615 13 23 citations h-index g-index papers 42 42 42 569 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Materials Science and Engineering C, 2016, 69, 108-116.	7.3	63
2	Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Materials Science and Engineering C, 2015, 49, 549-559.	7.3	55
3	Influence of alumina and silica addition on the physico-mechanical and dielectric behavior of ceramic porcelain insulator at high sintering temperature. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2018, 57, 151-159.	1.9	38
4	A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid wastes. Ceramics International, 2020, 46, 833-843.	4.8	38
5	Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Materials Science and Engineering C, 2018, 93, 341-355.	7.3	37
6	Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass. Bulletin of Materials Science, 2015, 38, 957-964.	1.7	33
7	Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2016, 55, 228-238.	1.9	30
8	<l>In Vitro</l> Bioactivity and Physical–Mechanical Properties of MnO ₂ Substituted 45S5 Bioactive Glasses and Glass-Ceramics. Journal of Biomaterials and Tissue Engineering, 2012, 2, 249-258.	0.1	28
9	Synthesis, characterization, mechanical and biological properties of biocomposite based on zirconia containing 1393 bioactive glass with hydroxyapatite. Ceramics International, 2020, 46, 10442-10451.	4.8	27
10	Stannous-Stannic Equilibrium in Molten Binary Alkali Silicate and Ternary Silicate Glasses. Journal of the American Ceramic Society, 1982, 65, 549-554.	3.8	25
11	Leachability of Molybdenum from Ternary Phosphate Glasses. Journal of the American Ceramic Society, 1996, 79, 1329-1334.	3.8	24
12	CuO assisted borate 1393B3 glass scaffold with enhanced mechanical performance and cytocompatibility: An In vitro study. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104231.	3.1	15
13	Effect of sintering on physical, mechanical, and electrical properties of alumina-based porcelain insulator using economic raw materials doped with zirconia. Journal of the Australian Ceramic Society, 2019, 55, 987-997.	1.9	14
14	Effect of Cobalt Oxide Substitution on Mechanical Behaviour and Elastic Properties of Bioactive Glass and Glass-Ceramics. Transactions of the Indian Ceramic Society, 2016, 75, 12-19.	1.0	13
15	Development of Zirconia Substituted 1393 Bioactive Glass for Orthopaedic Application. Oriental Journal of Chemistry, 2017, 33, 2720-2730.	0.3	13
16	Mechanical and biological response of (CeO2+La2O3)-substituted 45S5 bioactive glasses for biomedical application. Journal of the Australian Ceramic Society, 2020, 56, 1243-1252.	1.9	13
17	Free oxygen ion activity in binary alkali silicate glasses. Journal of Non-Crystalline Solids, 1991, 128, 154-161.	3.1	12
18	Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass. Bulletin of Materials Science, 2016, 39, 1355-1361.	1.7	12

#	Article	IF	CITATIONS
19	Effect of ZrO2 on the sintering behavior, strength and high-frequency dielectric properties of electrical ceramic porcelain insulator. Materials Research Express, 2018, 5, 015202.	1.6	12
20	Effect of Sm2O3 substitution on mechanical and biological properties of 45S5 bioactive glass. Journal of the Australian Ceramic Society, 2018, 54, 621-630.	1.9	12
21	ZnO modified 1393 bioactive scaffolds with enhanced cytocompatibility and mechanical performance. Ceramics International, 2020, 46, 6703-6713.	4.8	11
22	In-vitro analysis of bioactivity, hemolysis, and mechanical properties of Zn substituted Calcium Zirconium silicate (baghdadite). Ceramics International, 2021, 47, 16037-16053.	4.8	9
23	Simple and rapid spectrophotometric method for the determination of tin(II) in binary alkali silicate glasses. Analyst, The, 1985, 110, 1321.	3.5	8
24	Destructive and non-destructive behavior of nickel oxide doped bioactive glass and glass-ceramic. Journal of the Australian Ceramic Society, 2017, 53, 939-951.	1.9	8
25	KTa _{1â€"<i>x</i>â€"<i>y</i>} Ti _{<i>x</i>} Ge _{<i>y</i>} O _{3â^î} : A High îº Relaxor Dielectric and Superior Oxide-Ion Electrolyte for IT-SOFC. ACS Applied Energy Materials, 2020, 3, 3205-3211.	5.1	8
26	Synthesis and Characterization of Cerium- and Lanthanum Containing Bioactive Glass. Key Engineering Materials, 0, 751, 617-628.	0.4	7
27	Developing a high strength physico-mechanical and electrical properties of ceramic porcelain insulator using zirconia as an additive. Materials Research Express, 2018, 5, 075202.	1.6	7
28	Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses. Journal of the Australian Ceramic Society, 2019, 55, 145-155.	1.9	7
29	SrO assisted 1393 glass scaffold with enhanced biological compatibility. Journal of Non-Crystalline Solids, 2020, 550, 120392.	3.1	7
30	Investigating in vitro bioactivity, magnetic and mechanical properties of iron and cobalt oxide reinforced (45S5-HA) biocomposite. Journal of the Australian Ceramic Society, 2018, 54, 411-421.	1.9	5
31	A Nanoâ€Wrinkled Zn 0.92 Fe 0.08 O Thin Film Developed Using a Highâ€RPM Electroâ€Spin Patterning Technique via Solâ€Gel Route For Methane Sensing. ChemistrySelect, 2018, 3, 11881-11889.	1.5	5
32	Mechanochemical and in vitro cytocompatibility evaluation of zirconia modified silver substituted 1393 bioactive glasses. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 64-75.	1.9	5
33	Kinetics and thermodynamics of ferrous-ferric equilibrium in sodium aluminoborate glasses. Journal of Non-Crystalline Solids, 1984, 69, 59-67.	3.1	4
34	Synthesis and Characterization of Bioactive-Glass Ceramics. Ceramic Engineering and Science Proceedings, 0, , 83-94.	0.1	3
35	Synthesis, Characterization, and Ionic Conductivity Studies of Simultaneously Substituted K- and Ga-Doped BaZrO3. ACS Omega, 2021, 6, 30327-30334.	3.5	3
36	Fabrication of Nano-petals Zn0.97Cu0.03O Thin Film and Application in Methane Sensing. Lecture Notes in Electrical Engineering, 2020, , 427-433.	0.4	2

#	Article	IF	CITATIONS
37	<i>In Vitro</i> Bioactivity and Physical-Mechanical Properties of HA Based 45S5 Bio-Composites. Key Engineering Materials, 0, 702, 83-90.	0.4	1
38	Performance analysis of deep bed drying of canola seeds using numerical technique. Journal of Stored Products Research, 2021, 94, 101891.	2.6	1
39	Leachability of Iron Ions from Binary and Ternary Phosphate Glasses. Transactions of the Indian Ceramic Society, 2009, 68, 23-30.	1.0	O
40	Enhanced in vivo biocompatibility of magnesia-contained bioactive glasses. Journal of the Australian Ceramic Society, 2019, 55, 337-342.	1.9	0
41	Design analysis of continuous counter-current deep bed drying of corn through modeling and simulation and validation with experiment. , 2021, , .		0