
Meng-Fang Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10746807/publications.pdf Version: 2024-02-01

MENC-FANCLIN

#	Article	IF	CITATIONS
1	Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nature Communications, 2018, 9, 4280.	5.8	433
2	Wearable Allâ€Fabricâ€Based Triboelectric Generator for Water Energy Harvesting. Advanced Energy Materials, 2017, 7, 1701243.	10.2	220
3	Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248-255.	8.2	216
4	Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Advances, 2011, 1, 576.	1.7	177
5	Deformable conductors for human–machine interface. Materials Today, 2018, 21, 508-526.	8.3	163
6	Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polymer Chemistry, 2012, 3, 962.	1.9	155
7	Green aqueous modification of fluoropolymers for energy storage applications. Journal of Materials Chemistry, 2012, 22, 5951.	6.7	141
8	A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 42200-42209.	4.0	131
9	Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. Journal of Materials Chemistry, 2011, 21, 3751.	6.7	110
10	Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. Journal of Materials Chemistry, 2011, 21, 16500.	6.7	109
11	Transparent, Flexible Cellulose Nanofibril–Phosphorene Hybrid Paper as Triboelectric Nanogenerator. Advanced Materials Interfaces, 2017, 4, 1700651.	1.9	97
12	A Deformable and Highly Robust Ethyl Cellulose Transparent Conductor with a Scalable Silver Nanowires Bundle Micromesh. Advanced Materials, 2018, 30, e1802803.	11.1	95
13	Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polymer Chemistry, 2011, 2, 2000.	1.9	94
14	Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications: A review of scientific challenges. Composites Part A: Applied Science and Manufacturing, 2018, 115, 88-103.	3.8	94
15	Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Applied Physics Letters, 2014, 104, .	1.5	83
16	Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. ACS Nano, 2017, 11, 1712-1718.	7.3	83
17	Low-temperature processable amorphous In-W-O thin-film transistors with high mobility and stability. Applied Physics Letters, 2014, 104, 152103.	1.5	79
18	Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices. Small, 2016, 12, 6370-6377.	5.2	66

Meng-Fang Lin

#	Article	IF	CITATIONS
19	Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants. Applied Physics Letters, 2015, 106, .	1.5	56
20	Flexible Superamphiphobic Film for Water Energy Harvesting. Advanced Materials Technologies, 2017, 2, 1600186.	3.0	51
21	Formation of PVDF-g-HEMA/BaTiO3 nanocomposites via in situ nanoparticle synthesis for high performance capacitor applications. Journal of Materials Chemistry A, 2013, 1, 14455.	5.2	48
22	Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors. Journal of Materials Chemistry C, 2015, 3, 596-600.	2.7	45
23	A copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states. Journal of Materials Chemistry C, 2017, 5, 6547-6554.	2.7	35
24	Photothermal actuated origamis based on graphene oxide–cellulose programmable bilayers. Nanoscale Horizons, 2020, 5, 730-738.	4.1	32
25	A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Materials, 2017, 9, e437-e437.	3.8	22
26	Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process. AIP Advances, 2015, 5, .	0.6	16
27	Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors. Applied Physics Letters, 2014, 105, .	1.5	13
28	Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors. Applied Physics Letters, 2014, 105, .	1.5	9
29	Electromagnetic field controlled domain wall displacement for induced strain tailoring in BaTiO3-epoxy nanocomposite. Scientific Reports, 2022, 12, 7504.	1.6	7
30	Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors. Journal Physics D: Applied Physics, 2017, 50, 025102.	1.3	4
31	Nanogenerators: Transparent, Flexible Cellulose Nanofibril–Phosphorene Hybrid Paper as Triboelectric Nanogenerator (Adv. Mater. Interfaces 22/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	1

32 Water Energy Harvesting: Flexible Superamphiphobic Film for Water Energy Harvesting (Adv. Mater.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf