Paul Whiting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10746096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nature Biotechnology, 2012, 30, 715-720.	17.5	515
2	Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron, 1990, 5, 35-48.	8.1	466
3	GABAA receptor subtypes immunopurified from rat brain with α subunit-specific antibodies have unique pharmacological properties. Neuron, 1991, 7, 667-676.	8.1	202
4	Molecular studies of the neuronal nicotinic acetylcholine receptor family. Molecular Neurobiology, 1987, 1, 281-337.	4.0	201
5	Identification of a GABAB Receptor Subunit, gb2, Required for Functional GABAB Receptor Activity. Journal of Biological Chemistry, 1999, 274, 7607-7610.	3.4	189
6	Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Science Translational Medicine, 2016, 8, 335ra56.	12.4	154
7	Neuronal nicotinic acetylcholine receptor β-subunit is coded for by the cDNA clone α4. FEBS Letters, 1987, 219, 459-463.	2.8	130
8	Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research. Molecular Therapy, 2014, 22, 1530-1543.	8.2	127
9	cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron, 1988, 1, 241-248.	8.1	126
10	Identification of Molecular Determinants That Are Important in the Assembly of N-Methyl-d-aspartate Receptors. Journal of Biological Chemistry, 2001, 276, 18795-18803.	3.4	102
11	Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata). Journal of Comparative Neurology, 1988, 274, 255-264.	1.6	76
12	Directing Differentiation of Human Embryonic Stem Cells Toward Anterior Neural Ectoderm Using Small Molecules. Stem Cells, 2012, 30, 1875-1884.	3.2	61
13	Hippocampal nicotinic autoreceptors modulate acetylcholine release. Biochemical Society Transactions, 1993, 21, 429-431.	3.4	58
14	Affinity labelling of neuronal acetylcholine receptors localizes acetylcholine-binding sites to their β-subunits. FEBS Letters, 1987, 213, 55-60.	2.8	54
15	N-Methyl-d-aspartate (NMDA) Receptor Subunit NR1 Forms the Substrate for Oligomeric Assembly of the NMDA Receptor. Journal of Biological Chemistry, 2007, 282, 25299-25307.	3.4	42
16	Antisera against an acetylcholine receptor α3 fusion protein bind to ganglionic but not to brain nicotinic acetylcholine receptors. FEBS Letters, 1989, 257, 393-399.	2.8	38
17	Monoclonal antibodies to Torpedo acetylcholine receptor. Characterisation of antigenic determinants within the cholinergic binding site. FEBS Journal, 1985, 150, 533-539.	0.2	36
18	Using Monoclonal Antibodies to Determine the Structures of Acetylcholine Receptors from Electric Organs, Muscles, and Neurons. Annals of the New York Academy of Sciences, 1987, 505, 208-225.	3.8	30

PAUL WHITING

#	Article	IF	CITATIONS
19	Carboxylesterase Notum Is a Druggable Target to Modulate Wnt Signaling. Journal of Medicinal Chemistry, 2021, 64, 4289-4311.	6.4	26
20	The Nicotinic Acetylcholine Receptor Gene Family: Structure of Nicotinic Receptors from Muscle and Neurons and Neuronal α-Bungarotoxin-Binding Proteins. Advances in Experimental Medicine and Biology, 1991, 287, 255-278.	1.6	23
21	Cloning of a Novel G-Protein-Coupled Receptor GPR 51 Resembling GABABReceptors Expressed Predominantly in Nervous Tissues and Mapped Proximal to the Hereditary Sensory Neuropathy Type 1 Locus on Chromosome 9. Genomics, 1999, 56, 288-295.	2.9	17
22	5-Phenyl-1,3,4-oxadiazol-2(3 <i>H</i>)-ones Are Potent Inhibitors of Notum Carboxylesterase Activity Identified by the Optimization of a Crystallographic Fragment Screening Hit. Journal of Medicinal Chemistry, 2020, 63, 12942-12956.	6.4	13
23	Structural and Functional Heterogeneity of Nicotinic Receptors. Novartis Foundation Symposium, 1990, 152, 23-52.	1.1	13
24	Design of a Potent, Selective, and Brain-Penetrant Inhibitor of Wnt-Deactivating Enzyme Notum by Optimization of a Crystallographic Fragment Hit. Journal of Medicinal Chemistry, 2022, 65, 7212-7230.	6.4	9
25	Structure of Neuronal Nicotinic Receptors. , 1988, , 159-172.		7
26	Monoclonal antibody probes for nicotinic receptors of muscles and nerves. Biochemical Society Transactions, 1991, 19, 115-120.	3.4	5
27	Structure of Muscle and Neuronal Nicotinic Acetylcholine Receptors. , 1989, , 37-53.		3
28	Structural Analysis and Development of Notum Fragment Screening Hits. ACS Chemical Neuroscience, 2022, 13, 2060-2077.	3.5	3
29	Molecular Studies of the Neuronal Nicotinic Acetylcholine Receptor Family. , 1988, , 281-337.		0