Tracey A Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10745389/publications.pdf

Version: 2024-02-01

147726 82499 5,394 85 31 72 citations h-index g-index papers 87 87 87 7564 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hepatitis A Virus Cellular Receptor 1 (HAVcr-1) Initiates Prostate Cancer Progression in Human Cells via Hepatocyte Growth Factor (HGF)-Induced Changes in Junctional Integrity. Biomolecules, 2022, 12, 338.	1.8	O
2	NUPR1 and its potential role in cancer and pathological conditions (Review). International Journal of Oncology, 2021, 58, .	1.4	23
3	SIPA1 Is a Modulator of HGF/MET Induced Tumour Metastasis via the Regulation of Tight Junction-Based Cell to Cell Barrier Function. Cancers, 2021, 13, 1747.	1.7	4
4	SIKs suppress tumor function and regulate drug resistance in breast cancer. American Journal of Cancer Research, 2021, 11, 3537-3557.	1.4	1
5	Stratification Using hTERT and Stem Cell Markers Confers a Good Prognosis in Invasive Breast Cancer. Cancer Genomics and Proteomics, 2020, 17, 169-174.	1.0	1
6	Tim-3 promotes cell aggressiveness and paclitaxel resistance through NF-κB/STAT3 signalling pathway in breast cancer cells. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2020, 32, 564-579.	0.7	19
7	Location, function and role of stromal cellâ€'derivedÂfactors and possible implications in cancer (Review). International Journal of Molecular Medicine, 2020, 47, 435-443.	1.8	4
8	Influence of anaesthetics on the production of cancer cell motogens, stromal cell‑derived factor‑1 and hepatocyte growth factor by fibroblasts. Oncology Letters, 2020, 21, 140.	0.8	2
9	Fibroblast activation protein-α promotes the growth and migration of lung cancer cells via the PI3K and sonic hedgehog pathways. International Journal of Molecular Medicine, 2017, 41, 275-283.	1.8	30
10	Neural Wiskott-Aldrich syndrome protein (nWASP) is implicated in human lung cancer invasion. BMC Cancer, 2017, 17, 224.	1.1	15
11	The Effect of Aurora Kinase Inhibitor on Adhesion and Migration in Human Breast Cancer Cells and Clinical Implications. World Journal of Oncology, 2017, 8, 151-161.	0.6	9
12	HAVcR-1 involvement in cancer progression. Histology and Histopathology, 2017, 32, 121-128.	0.5	9
13	The Era of Multigene Panels Comes? The Clinical Utility of Oncotype DX and MammaPrint. World Journal of Oncology, 2017, 8, 34-40.	0.6	46
14	NHERF1 regulates the progression of colorectal cancer through the interplay with VEGFR2 pathway. Oncotarget, 2017, 8, 7753-7765.	0.8	6
15	A Novel NHERF1 Mutation in Human Breast Cancer and Effects on Malignant Progression. Anticancer Research, 2017, 37, 67-74.	0.5	11
16	Epithelial protein lost in neoplasm- \hat{l}_{\pm} (EPLIN- \hat{l}_{\pm}) is a potential prognostic marker for the progression of epithelial ovarian cancer. International Journal of Oncology, 2016, 48, 2488-2496.	1.4	14
17	The role of JAM-B in cancer and cancer metastasis (Review). Oncology Reports, 2016, 36, 3-9.	1.2	17
18	Effect of junctional adhesion molecule-2 expression on cell growth, invasion and migration in human colorectal cancer. International Journal of Oncology, 2016, 48, 929-936.	1.4	21

#	Article	IF	CITATIONS
19	The Impact of TIMM17A on Aggressiveness of Human Breast Cancer Cells. Anticancer Research, 2016, 36, 1237-41.	0.5	9
20	The Clinical Implications of RSK1-3 in Human Breast Cancer. Anticancer Research, 2016, 36, 1267-74.	0.5	11
21	Metastasis to Bone in Human Cancer Is Associated with Loss of Occludin Expression. Anticancer Research, 2016, 36, 1287-93.	0.5	13
22	Role of the WASP and WAVE family proteins in breast cancer invasion and metastasis. Breast Cancer: Targets and Therapy, 2015, 7, 99.	1.0	36
23	Metastasis suppressor 1 expression in human ovarian cancer: The impact on cellular migration and metastasis. International Journal of Oncology, 2015, 47, 1429-1439.	1.4	9
24	Expression of claudins in human clear cell renal cell carcinoma. Cancer Genomics and Proteomics, 2015, 12, 1-8.	1.0	7
25	Epithelial-mesenchymal Transition (EMT) Markers in Human Pituitary Adenomas Indicate a Clinical Course. Anticancer Research, 2015, 35, 2635-43.	0.5	26
26	Expression of metastasis-associated gene-1 is associated with bone invasion and tumor stage in human pituitary adenomas. Cancer Genomics and Proteomics, 2015, 12, 113-8.	1.0	4
27	Interleukin-24 (IL-24) Expression and Biological Impact on HECV Endothelial Cells. Cancer Genomics and Proteomics, 2015, 12, 243-50.	1.0	5
28	Therapeutic potential of capillary morphogenesis gene 2 extracellular ν WA domain in tumour-related angiogenesis. International Journal of Oncology, 2014, 45, 1565-1573.	1.4	8
29	The role of tight junctions in cancer metastasis. Seminars in Cell and Developmental Biology, 2014, 36, 224-231.	2.3	99
30	HGF and the regulation of tight junctions in human prostate cancer cells. Oncology Reports, 2014, 32, 213-224.	1.2	13
31	The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (Review). Molecular Medicine Reports, 2014, 9, 779-785.	1.1	118
32	Regulation and involvement in cancer and pathological conditions of MAGI1, a tight junction protein. Anticancer Research, 2014, 34, 3251-6.	0.5	32
33	Psoriasin (S100A7) is a positive regulator of survival and invasion of prostate cancer cells. Urologic Oncology: Seminars and Original Investigations, 2013, 31, 1576-1583.	0.8	25
34	Tight Junctions in Human Urinary Bladder Cancer. Cancer Metastasis - Biology and Treatment, 2013, , 131-148.	0.1	0
35	Claudin-20 promotes an aggressive phenotype in human breast cancer cells. Tissue Barriers, 2013, 1, e26518.	1.6	17
36	The Expression of the Nectin Complex in Human Breast Cancer and the Role of Nectin-3 in the Control of Tight Junctions during Metastasis. PLoS ONE, 2013, 8, e82696.	1.1	28

3

#	Article	IF	CITATIONS
37	HAVcR-1 expression in human colorectal cancer and its effects on colorectal cancer cells in vitro. Anticancer Research, 2013, 33, 207-14.	0.5	9
38	Junctional adhesion molecules in cerebral endothelial tight junction and brain metastasis. Anticancer Research, 2013, 33, 2353-9.	0.5	24
39	Claudin-5 is involved in breast cancer cell motility through the N-WASP and ROCK signalling pathways. Journal of Experimental and Clinical Cancer Research, 2012, 31, 43.	3.5	54
40	Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens. PLoS ONE, 2012, 7, e34236.	1.1	111
41	Claudin-5 participates in the regulation of endothelial cell motility. Molecular and Cellular Biochemistry, 2012, 362, 71-85.	1.4	27
42	Tight Junctions in Cancer Metastasis and Their Investigation Using ECIS (Electric Cell-Substrate) Tj ETQq0 0 0 rgI	BT /Overlo	ck 10 Tf 50 5
43	Expression of signal-induced proliferation-associated gene 1 (SIPA1), a RapGTPase-activating protein, is increased in colorectal cancer and has diverse effects on functions of colorectal cancer cells. Cancer Genomics and Proteomics, 2012, 9, 321-7.	1.0	15
44	Tight junctions in cancer metastasis. Frontiers in Bioscience - Landmark, 2011, 16, 898.	3.0	88
45	The Claudin family and its role in cancer and metastasis. Frontiers in Bioscience - Landmark, 2011, 16, 1069.	3.0	88
46	EPLIN is a Negative Regulator of Prostate Cancer Growth and Invasion. Journal of Urology, 2011, 186, 295-301.	0.2	25
47	Putative Breast Tumor Suppressor TACC2 Suppresses the Aggressiveness of Breast Cancer Cells through a PLCγ Pathway. Current Signal Transduction Therapy, 2011, 6, 55-64.	0.3	0
48	Metastasis tumour suppressor-1 and the aggressiveness of prostate cancer cells. Experimental and Therapeutic Medicine, 2011, 2, 157-162.	0.8	13
49	Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology, 2011, 215, 353-365.	1.5	47
50	Claudin-11 decreases the invasiveness of bladder cancer cells. Oncology Reports, 2011, 25, 1503-9.	1.2	20
51	Claudin-16/Paracellin-1, Cloning, Expression, and Its Role in Tight Junction Functions in Cancer and Endothelial Cells. Methods in Molecular Biology, 2011, 762, 383-407.	0.4	4
52	HAVcR-1 reduces the integrity of human endothelial tight junctions. Anticancer Research, 2011, 31, 467-73.	0.5	10
53	Loss of occludin leads to the progression of human breast cancer. International Journal of Molecular Medicine, 2010, 26, 723-34.	1.8	88
54	Hepatocyte Growth Factor and Its Receptor Signalling Complex as Targets in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 2-6.	0.9	28

#	Article	IF	Citations
55	Targeting RhoC by Way of Ribozyme Trangene in Human Breast Cancer Cells and its Impact on Cancer Invasion. World Journal of Oncology, 2010, 1, 7-13.	0.6	3
56	Loss of tight junction barrier function and its role in cancer metastasis. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 872-891.	1.4	381
57	Expression of the ERM family members (ezrin, radixin and moesin) in breast cancer. Experimental and Therapeutic Medicine, 2009, $1, 153-160$.	0.8	11
58	N-WASP is a putative tumour suppressor in breast cancer cells, inÂvitro and inÂvivo, and is associated with clinical outcome in patients with breast cancer. Clinical and Experimental Metastasis, 2008, 25, 97-108.	1.7	41
59	Claudinâ€16 reduces the aggressive behavior of human breast cancer cells. Journal of Cellular Biochemistry, 2008, 105, 41-52.	1.2	34
60	Genetic upregulation of matriptaseâ€2 reduces the aggressiveness of prostate cancer cells in vitro and in vivo and affects FAK and paxillin localisation. Journal of Cellular Physiology, 2008, 216, 780-789.	2.0	30
61	Phospholipase-C gamma-1 (PLC \hat{I}^3 -1) is critical in hepatocyte growth factor induced in vitro invasion and migration without affecting the growth of prostate cancer cells. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 386-391.	0.8	19
62	Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome. Molecular Cancer, 2008, 7, 71.	7.9	87
63	The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. International Journal of Oncology, 2008, 33, 585-93.	1.4	71
64	Tight junctions and metastasis of breast cancer. Cancer Metastasis - Biology and Treatment, 2007, , 77-110.	0.1	0
65	Enhanced tight junction function in human breast cancer cells by antioxidant, selenium and polyunsaturated lipid. Journal of Cellular Biochemistry, 2007, 101, 155-166.	1.2	26
66	Expression of Interleukin 11 and Its Receptor and Their Prognostic Value in Human Breast Cancer. Annals of Surgical Oncology, 2006, 13 , $802-808$.	0.7	70
67	Synergistic regulation of endothelial tight junctions by antioxidant (Se) and polyunsaturated lipid (GLA) via Claudin-5 modulation. Journal of Cellular Biochemistry, 2006, 98, 1308-1319.	1.2	25
68	Expression of breast cancer specific gene-1 (BCSG-1/gamma-synuclein) is associated with tumour grade but not with clinical outcome of patients with breast cancer. Oncology Reports, 2006, 16, 207-12.	1.2	6
69	Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Critical Reviews in Oncology/Hematology, 2005, 53, 35-69.	2.0	237
70	Expression of the Transcription Factors Snail, Slug, and Twist and Their Clinical Significance in Human Breast Cancer. Annals of Surgical Oncology, 2005, 12, 488-496.	0.7	440
71	KiSS-1 Expression in Human Breast Cancer. Clinical and Experimental Metastasis, 2005, 22, 503-511.	1.7	83
72	Targeting Matrilysin and Its Impact on Tumor Growth In vivo: The Potential Implications in Breast Cancer Therapy. Clinical Cancer Research, 2005, 11, 6012-6019.	3.2	96

#	Article	IF	CITATIONS
73	Tight junctions and bladder cancer (review). International Journal of Molecular Medicine, 2005, 16, 3-9.	1.8	24
74	The potential lymphangiogenic effects of hepatocyte growth factor/scatter factor in vitro and in vivo. International Journal of Molecular Medicine, 2005, 16, 723-8.	1.8	30
75	Hepatocyte growth factor disrupts tight junctions in human breast cancer cells. Cell Biology International, 2004, 28, 361-371.	1.4	44
76	Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. European Journal of Cancer, 2004, 40, 2717-2725.	1.3	127
77	The HGF/SF antagonist NK4 reverses fibroblast- and HGF-induced prostate tumor growth and angiogenesisin vivo. International Journal of Cancer, 2003, 106, 348-354.	2.3	48
78	Biphasic effects of 17-?-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells. Journal of Cellular Physiology, 2003, 196, 362-369.	2.0	89
79	The role of the CD44/ezrin complex in cancer metastasis. Critical Reviews in Oncology/Hematology, 2003, 46, 165-186.	2.0	201
80	Growth and angiogenesis of human breast cancer in a nude mouse tumour model is reduced by NK4, a HGF/SF antagonist. Carcinogenesis, 2003, 24, 1317-1323.	1.3	74
81	Reduction of stromal fibroblast-induced mammary tumor growth, by retroviral ribozyme transgenes to hepatocyte growth factor/scatter factor and its receptor, c-MET. Clinical Cancer Research, 2003, 9, 4274-81.	3.2	38
82	Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular permeability of human vascular endothelial cells. Journal of Cellular Physiology, 2002, 192, 268-275.	2.0	69
83	Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resistance (TER) and increases paracellular permeability in human vascular endothelial cells., 1999, 181, 319-329.		90
84	Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA. Applied and Environmental Microbiology, 1998, 64, 2333-2333.	1.4	56
85	Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA. Applied and Environmental Microbiology, 1998, 64, 795-799.	1.4	1,498