Agata KrÃ³likowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1074519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surface Science, 2003, 532-535, 227-232.	1.9	158
2	Silver Nanoparticle Induced Photocurrent Enhancement at WO ₃ Photoanodes. Angewandte Chemie - International Edition, 2010, 49, 7980-7983.	13.8	105
3	A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles. Analyst, The, 2014, 139, 1101.	3.5	36
4	Construction of DNA biosensor at glassy carbon surface modified with 4-aminoethylbenzenediazonium salt. Biosensors and Bioelectronics, 2011, 26, 2506-2512.	10.1	28
5	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	3.2	27
6	Mineral microbial structures in a bone of the Late Cretaceous dinosaur Saurolophus angustirostris from the Gobi Desert, Mongolia — a Raman spectroscopy study. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 358-360, 51-61.	2.3	26
7	Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films. Electrochimica Acta, 2013, 104, 282-288.	5.2	26
8	Reduced graphene oxide doping with nanometer-sized ferrocene moieties – New active material for glucose redox sensors. Biosensors and Bioelectronics, 2019, 128, 23-31.	10.1	24
9	SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.	3.2	22
10	Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia. PLoS ONE, 2016, 11, e0146293.	2.5	22
11	Self-assembled monolayers of mercaptosuccinic acid on silver and gold surfaces designed for protein binding. Part I: structure of the monolayer. Journal of Raman Spectroscopy, 2007, 38, 936-942.	2.5	21
12	Structure and composition of binary monolayers self-assembled from sodium 2-mercaptoetanosulfonate and mercaptoundecanol mixed solutions on silver and gold supports. Physical Chemistry Chemical Physics, 2009, 11, 3390.	2.8	17
13	Surface-enhanced resonance Raman scattering (SERRS) as a tool for the studies of electron transfer proteins attached to biomimetic surfaces: Case of cytochrome c. Electrochimica Acta, 2013, 111, 952-995.	5.2	17
14	Exchange of Methyl―and Azobenzeneâ€Terminated Alkanethiols on Polycrystalline Gold Studied by Tipâ€Enhanced Raman Mapping. ChemPhysChem, 2014, 15, 276-282.	2.1	17
15	The core–shell nature of nanostructured WO3 photoelectrodes demonstrated in spectroelectrochemical studies. Journal of Electroanalytical Chemistry, 2011, 662, 229-239.	3.8	16
16	Comparative Studies on IR, Raman, and Surface Enhanced Raman Scattering Spectroscopy of Dipeptides Containing ΔAla and ΔPhe. Journal of Physical Chemistry B, 2012, 116, 1414-1425.	2.6	16
17	SERS and DFT Study of Noble-Metal-Anchored Cys-Trp/Trp-Cys Dipeptides: Influence of Main-Chain Direction and Terminal Modifications. Journal of Physical Chemistry C, 2020, 124, 7097-7116.	3.1	16
18	Surfaceâ€enhanced resonance Raman spectroscopic characterization of cytochrome <i>c</i> immobilized on 2â€mercaptoethanesulfonate monolayers on silver. Journal of Raman Spectroscopy, 2010, 41, 1621-1631.	2.5	14

Agata KrÃ³likowska

#	Article	IF	CITATIONS
19	Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochimica Acta, 2015, 165, 430-442.	5.2	14
20	Combination of copolymer film (PPy-PPyCOOH) and magnetic nanoparticles as an electroactive and biocompatible platform for electrochemical purposes. Electrochimica Acta, 2018, 263, 454-464.	5.2	13
21	Physicochemical properties and in vitro cytotoxicity of iron oxide-based nanoparticles modified with antiangiogenic and antitumor peptide A7R. Journal of Nanoparticle Research, 2017, 19, 160.	1.9	11
22	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	3.2	11
23	Self-assembled monolayers of mercaptosuccinic acid monolayers on silver and gold surfaces designed for protein binding. Part II: vibrational spectroscopy studies on cytochromec immobilization. Journal of Raman Spectroscopy, 2007, 38, 943-949.	2.5	9
24	Partitioning of doxorubicin into Langmuir and Langmuir–Blodgett biomimetic mixed monolayers: Electrochemical and spectroscopic studies. Journal of Electroanalytical Chemistry, 2013, 710, 59-69.	3.8	9
25	Interactions of Doxorubicin with Organized Interfacial Assemblies. 2. Spectroscopic Characterization. Langmuir, 2013, 29, 14570-14579.	3.5	9
26	Nanoporous WO ₃ – Fe ₂ O ₃ films; structural and photo-electrochemical characterization. Functional Materials Letters, 2014, 07, 1440006.	1.2	9
27	Hydrophilic iron oxide nanoparticles probe the organization of biomimetic layers: electrochemical and spectroscopic evidence. Electrochimica Acta, 2016, 209, 671-681.	5.2	9
28	Reduced Self-Aggregation and Improved Stability of Silica-Coated Fe3O4/Ag SERS-Active Nanotags Functionalized With 2-Mercaptoethanesulfonate. Frontiers in Chemistry, 2021, 9, 697595.	3.6	9
29	pH and Substrate Effect on Adsorption of Peptides Containing <i>Z</i> and <i>E</i> Dehydrophenylalanine. Surface-Enhanced Raman Spectroscopy Studies on Ag Nanocolloids and Electrodes. Journal of Physical Chemistry B, 2014, 118, 4025-4036.	2.6	8
30	Enhancement of WO3 Performance through Resonance Coupling with Ag Nanoparticles. Energy Procedia, 2012, 22, 137-146.	1.8	4
31	Preparation and characterization of CdSe/POMA photoactive composites electrochemically grown on HOPG surfaces. Journal of Electroanalytical Chemistry, 2020, 875, 114128.	3.8	2
32	Editorial: Novel SERS-Active Materials and Substrates: Sensing and (Bio)applications. Frontiers in Chemistry, 2021, 9, 784735.	3.6	0