
Goundla Srinivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10744608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coarse grain models and the computer simulation of soft materials. Journal of Physics Condensed Matter, 2004, 16, R481-R512.	1.8	359
2	Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Progress in Polymer Science, 2007, 32, 838-857.	24.7	351
3	Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Materials, 2004, 3, 638-644.	27.5	340
4	Shrinkage of a Rapidly Growing Tumor by Drug-Loaded Polymersomes:Â pH-Triggered Release through Copolymer Degradation. Molecular Pharmaceutics, 2006, 3, 340-350.	4.6	305
5	Distance and Orientation Dependence of Excitation Energy Transfer: From Molecular Systems to Metal Nanoparticles. Journal of Physical Chemistry B, 2009, 113, 1817-1832.	2.6	126
6	A coarse grain model for n-alkanes parameterized from surface tension data. Journal of Chemical Physics, 2003, 119, 7043-7049.	3.0	121
7	Soft Patchy Nanoparticles from Solution-Phase Self-Assembly of Binary Diblock Copolymers. Nano Letters, 2008, 8, 611-618.	9.1	88
8	Simulation of Diblock Copolymer Self-Assembly, Using a Coarse-Grain Model. Journal of Physical Chemistry B, 2004, 108, 8153-8160.	2.6	85
9	Molecular Dynamics Simulations of Surfactant Self-Organization at a Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2006, 128, 848-853.	13.7	83
10	Key Roles for Chain Flexibility in Block Copolymer Membranes that Contain Pores or Make Tubes. Nano Letters, 2005, 5, 2343-2349.	9.1	75
11	Probing Membrane Insertion Activity of Antimicrobial Polymers via Coarse-Grain Molecular Dynamics. Journal of Chemical Theory and Computation, 2006, 2, 649-655.	5.3	52
12	A Solvent-Free Coarse Grain Model for Crystalline and Amorphous Cellulose Fibrils. Journal of Chemical Theory and Computation, 2011, 7, 2539-2548.	5.3	52
13	Nonideality in the composition dependence of viscosity in binary mixtures. Journal of Chemical Physics, 2001, 114, 6220-6228.	3.0	47
14	Molecular Dynamics Simulation Analysis of Anti-MUC1 Aptamer and Mucin 1 Peptide Binding. Journal of Physical Chemistry B, 2015, 119, 6571-6583.	2.6	44
15	Time-dependent survival probability in diffusion-controlled reactions in a polymer chain: Beyond the Wilemski–Fixman theory. Journal of Chemical Physics, 2002, 116, 7276-7282.	3.0	34
16	Modeling Surfactant Adsorption on Hydrophobic Surfaces. Physical Review Letters, 2005, 94, 228301.	7.8	33
17	Coarse-grain molecular dynamics simulations of diblock copolymer surfactants interacting with a lipid bilayer. Molecular Physics, 2004, 102, 883-889.	1.7	32
18	FRET by FET and Dynamics of Polymer Folding. Journal of Physical Chemistry B, 2001, 105, 2475-2478.	2.6	30

GOUNDLA SRINIVAS

#	Article	IF	CITATIONS
19	Nonexponentiality of time dependent survival probability and the fractional viscosity dependence of the rate in diffusion controlled reactions in a polymer chain. Journal of Chemical Physics, 2001, 114, 9170-9178.	3.0	30
20	The Enskog theory for transport coefficients of simple fluids with continuous potentials. Journal of Chemical Physics, 2001, 114, 6276-6285.	3.0	30
21	Effect of Orientational Motion of Mobile Chromophores on the Dynamics of Förster Energy Transfer in Polymers. Journal of Physical Chemistry B, 2001, 105, 9370-9374.	2.6	28
22	Foldability and the funnel of HP-36 protein sequence: Use of hydropathy scale in protein folding. Journal of Chemical Physics, 2002, 116, 8579.	3.0	24
23	Intermittency, current flows, and short time diffusion in interacting finite sized one-dimensional fluids. Journal of Chemical Physics, 2002, 116, 5941-5950.	3.0	23
24	Reentrant Behavior of Relaxation Time with Viscosity at Varying Composition in Binary Mixtures. Physical Review Letters, 2001, 86, 5926-5929.	7.8	22
25	Molecular dynamics simulations of self-assembly and nanotube formation by amphiphilic molecules in aqueous solution: a coarse-grain approach. Nanotechnology, 2007, 18, 205703.	2.6	22
26	Coarse-Grain Model for Natural Cellulose Fibrils in Explicit Water. Journal of Physical Chemistry B, 2014, 118, 3026-3034.	2.6	22
27	Detection of collapsed and ordered polymer structures by fluorescence resonance energy transfer in stiff homopolymers: Bimodality in the reaction efficiency distribution. Journal of Chemical Physics, 2002, 116, 837-844.	3.0	20
28	Computational approaches to nanobiotechnology: probing the interaction of synthetic molecules with phospholipid bilayers via a coarse grain model. Nanotechnology, 2004, 15, 1289-1295.	2.6	18
29	Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1934-1947.	3.5	18
30	Membrane Bound Hydraphiles Facilitate Cation Translocation. Journal of Physical Chemistry B, 2004, 108, 4231-4235.	2.6	17
31	Interfacial Fluctuations of Block Copolymers:  A Coarse-Grain Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2007, 111, 13734-13742.	2.6	14
32	Polymer Micelle Assisted Transport and Delivery of Model Hydrophilic Components inside a Biological Lipid Vesicle: A Coarse-Grain Simulation Study. Journal of Physical Chemistry B, 2013, 117, 12095-12104.	2.6	13
33	Incorporating a hydrophobic solid into a coarse grain liquid framework: Graphite in an aqueous amphiphilic environment. Journal of Chemical Physics, 2005, 123, 124907.	3.0	12
34	Study of Pair Contact Formation among Hydrophobic Residues in a Model HP-36 Protein:Â Relationship between Contact Order Parameter and Rate of Folding and Collapse. Journal of Physical Chemistry B, 2003, 107, 11768-11773.	2.6	10
35	Study of the dynamics of protein folding through minimalistic models. Theoretical Chemistry Accounts, 2003, 109, 8-21.	1.4	9
36	Distribution of reaction times in diffusion controlled reactions in polymers. Chemical Physics Letters, 2000, 328, 420-424.	2.6	8

GOUNDLA SRINIVAS

#	Article	IF	CITATIONS
37	The Enskog theory for classical vibrational energy relaxation in fluids with continuous potentials. Journal of Chemical Physics, 2001, 115, 4195-4198.	3.0	8
38	Relaxation in binary mixtures: Non-ideality, heterogeneity and re-entrance. Journal of Chemical Sciences, 2001, 113, 393-413.	1.5	7
39	Understanding the anomalous 1/t3 time dependence of velocity correlation function in one dimensional Lennard-Jones systems. Journal of Chemical Physics, 2000, 112, 7557-7563.	3.0	6
40	Computer simulation and mode-coupling theory analysis of time-dependent diffusion in two dimensional Lennard–Jones fluids. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266, 394-399.	2.1	5
41	Molecular Simulation in the Energy Biosciences. RSC Biomolecular Sciences, 2012, , 87-114.	0.4	Ο
42	Analysis and understanding of aptamer and peptide molecular interactions: Application to mucin 1 (Muc1) aptasensor. , 2015, , .		0