Michael Jaffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10742919/publications.pdf

Version: 2024-02-01

623734 552781 1,320 30 14 26 h-index citations g-index papers 32 32 32 1810 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Piezoelectric materials for tissue regeneration: A review. Acta Biomaterialia, 2015, 24, 12-23.	8.3	404
2	The structure of thermotropic copolyesters. Journal of Materials Science, 1986, 21, 1897-1913.	3.7	234
3	Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 2017, 149, 51-62.	11.4	178
4	Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials (Bristol), 2013, 8, 045007.	3.3	138
5	Evidence for Molecular Orientation and Residual Charge in the Electrospinning of Poly(butylene) Tj ETQq $1\ 1\ 0.784$	1314 rgBT	/Qyerlock 10
6	Rheology, morphology and properties of LCP/Nylon 66 composite fibers. Polymer Composites, 2000, 21, 114-123.	4.6	32
7	A comparison of degradable synthetic polymer fibers for anterior cruciate ligament reconstruction. Journal of Biomedical Materials Research - Part A, 2010, 93A, 738-747.	4.0	23
8	Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly(isosorbide) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
9	Thermal analysis characterization of isosorbide-containing thermosets. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1267-1275.	3.6	20
10	Sugar-Based Chemicals for Environmentally Sustainable Applications. ACS Symposium Series, 2010, , 3-27.	0.5	19
11	Thermal analysis of complex relaxation processes in poly(desaminotyrosyl-tyrosine arylates). Polymer, 2007, 48, 975-988.	3.8	17
12	Nitration Kinetics of Cellulose Fibers Derived from Wood Pulp in Mixed Acids. Industrial & Engineering Chemistry Research, 2018, 57, 1883-1893.	3.7	16
13	Process–structure–property relationships of erodable polymeric biomaterials: ll—long range order in poly(desaminotyrosyl arylates). Polymer, 2003, 44, 6033-6042.	3.8	15
14	Biorelevant characterization of biopolymers. Thermochimica Acta, 2003, 396, 141-152.	2.7	14
15	The thermal analysis of fibers in the twenty first century: From textile, industrial and composite to nano, bio and multi-functional. Thermochimica Acta, 2006, 442, 95-99.	2.7	14
16	Synchrotron scattering and thermo-mechanical properties of high performance thermotropic polymer. A multi-scale analysis and structure-property correlation. Polymer, 2018, 153, 408-421.	3.8	14
17	Process-structure-property relationships of erodable polymeric biomaterials, I: Poly(desaminotyrosyl) Tj ETQq1 1 0	.784314 r 3.2	gBT /Over $^{\circ}$
18	Chemical reaction modeling of industrial scale nitrocellulose production for military applications. AICHE Journal, 2020, 66, e16234.	3.6	13

#	Article	IF	Citations
19	Applications of liquid crystal polymers. Journal of Statistical Physics, 1991, 62, 985-995.	1.2	12
20	Synthesis and structural characterization of block and random low molecular weight copolymers composed of L-lactic acid and isosorbide succinate moieties. Journal of the Brazilian Chemical Society, 2009, 20, 1414-1424.	0.6	10
21	SALS, WAXS and mechanical properties of heatâ€treated thermotropic polymers. Polymers for Advanced Technologies, 2013, 24, 1029-1039.	3.2	9
22	Block Copolymers Containing (R)-3-Hydroxybutyrate and Isosorbide Succinate or (S)-Lactic Acid Mers. Journal of Polymers and the Environment, 2010, 18, 33-44.	5.0	6
23	Influence of microfillers on molecular alignment and tensile stress fracture in thermotropic liquid crystalline polymer. Emerging Materials Research, 2012, 1, 146-156.	0.7	5
24	Safer fuels by integrating polymer theory into design. Science, 2015, 350, 32-32.	12.6	5
25	Structure and morphology of electrospun collagen blends. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 202-213.	0.9	4
26	Synthesis of corn-derived carbohydrate derivatives as effective multifunctional sunscreens., 2009,,.		2
27	The thermal analysis of films in the 21st century: Relevance to cell culture, biochips and roll-to-roll circuits. Thermochimica Acta, 2006, 442, 87-91.	2.7	1
28	Synthesis and characterization of a novel isosorbide and biphenyl derived mesogenic monomer. , 2011, , .		0
29	Structure Evolution of Thermotropic Polymers by Thermal Annealing. A Light and X-Ray Scattering Study. Materials Research Society Symposia Proceedings, 2015, 1765, 65-70.	0.1	0
30	Thermal analysis of liquid crystalline polymers. , 2020, , 325-334.		0