Lily Peng

List of Publications by Citations

Source: https://exaly.com/author-pdf/10742499/lily-peng-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29 7,790 26 32 g-index

32 10,611 14.2 6.05 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
29	Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. <i>JAMA - Journal of the American Medical Association</i> , 2016 , 316, 2402-2410	27.4	2967
28	International evaluation of an AI system for breast cancer screening. <i>Nature</i> , 2020 , 577, 89-94	50.4	707
27	Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. <i>Nature Biomedical Engineering</i> , 2018 , 2, 158-164	19	668
26	End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. <i>Nature Medicine</i> , 2019 , 25, 954-961	50.5	590
25	TiO2 Nanotube Arrays of 1000 fh Length by Anodization of Titanium Foil: Phenol Red Diffusion. Journal of Physical Chemistry C, 2007, 111, 14992-14997	3.8	430
24	Artificial intelligence and deep learning in ophthalmology. <i>British Journal of Ophthalmology</i> , 2019 , 103, 167-175	5.5	365
23	Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. <i>Ophthalmology</i> , 2018 , 125, 1264-1272	7.3	211
22	The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. <i>Biomaterials</i> , 2009 , 30, 1268-72	15.6	209
21	Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. <i>American Journal of Surgical Pathology</i> , 2018 , 42, 1636-1646	6.7	192
20	Long-term small molecule and protein elution from TiO2 nanotubes. Nano Letters, 2009, 9, 1932-6	11.5	178
19	How to Read Articles That Use Machine Learning: UsersWuides to the Medical Literature. <i>JAMA - Journal of the American Medical Association</i> , 2019 , 322, 1806-1816	27.4	172
18	Deep learning in ophthalmology: The technical and clinical considerations. <i>Progress in Retinal and Eye Research</i> , 2019 , 72, 100759	20.5	163
17	Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. <i>Ophthalmology</i> , 2019 , 126, 552-564	7.3	122
16	Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in India. <i>JAMA Ophthalmology</i> , 2019 , 137, 987-993	3.9	91
15	Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. <i>Journal of Membrane Science</i> , 2008 , 319, 199-205	9.6	88
14	How to develop machine learning models for healthcare. <i>Nature Materials</i> , 2019 , 18, 410-414	27	83
13	Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. <i>Npj Digital Medicine</i> , 2019 , 2, 25	15.7	68

LIST OF PUBLICATIONS

12	Deep Learning for Predicting Refractive Error From Retinal Fundus Images 2018 , 59, 2861-2868		68	
11	Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs. <i>Ophthalmology</i> , 2019 , 126, 1627-1639	7-3	67	
10	Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. <i>Nano Letters</i> , 2010 , 10, 143-8	11.5	64	
9	Detection of anaemia from retinal fundus images via deep learning. <i>Nature Biomedical Engineering</i> , 2020 , 4, 18-27	19	60	
8	Contractility-dependent modulation of cell proliferation and adhesion by microscale topographical cues. <i>Small</i> , 2008 , 4, 1416-24	11	44	
7	Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. <i>BMJ Open</i> , 2021 , 11, e048008	3	44	
6	Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. <i>Nature Communications</i> , 2020 , 11, 130	17.4	42	
5	Collagen fibril diameter and alignment promote the quiescent keratocyte phenotype. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 613-21	5.4	37	
4	Predicting the risk of developing diabetic retinopathy using deep learning. <i>The Lancet Digital Health</i> , 2021 , 3, e10-e19	14.4	36	
3	Remote Tool-Based Adjudication for Grading Diabetic Retinopathy. <i>Translational Vision Science and Technology</i> , 2019 , 8, 40	3.3	12	
2	Scientific Discovery by Generating Counterfactuals Using Image Translation. <i>Lecture Notes in Computer Science</i> , 2020 , 273-283	0.9	6	
1	Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographs 2021 , 247-264			