V Radhakrishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10741746/publications.pdf

Version: 2024-02-01

		516710	4	\$54955
59	1,041	16		30
papers	citations	h-index		g-index
63	63	62		520
03	03	63		530
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Sizing and finishing of non-circular internal bores using elasto-abrasives. International Journal of Precision Technology, 2015, 5, 261.	0.2	1
2	Investigations on the Application of Elastomagnetic Abrasive Balls for Fine Finishing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	2.2	2
3	A study on fine finishing of hard workpiece surfaces using fluidized elastic abrasives. International Journal of Advanced Manufacturing Technology, 2014, 73, 1495-1509.	3.0	7
4	Fine finishing of internal surfaces using elastic abrasives. International Journal of Machine Tools and Manufacture, 2014, 78, 30-40.	13.4	40
5	Prospective methodologies to use impact wear for micro/nano finishing of surfaces. International Journal of Manufacturing Technology and Management, 2014, 28, 94.	0.1	1
6	Feasibility Study on Fine Finishing of Internal Grooves Using Elastic Abrasives. Materials and Manufacturing Processes, 2013, 28, 1110-1116.	4.7	6
7	Elastic Impact of Abrasives for Controlled Erosion in Fine Finishing of Surfaces. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	2.2	20
8	Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. Journal of Materials Processing Technology, 2003, 141, 51-59.	6.3	153
9	An investigation on solid lubricant moulded grinding wheels. International Journal of Machine Tools and Manufacture, 2003, 43, 965-972.	13.4	65
10	Application of Solid Lubricants in Grinding: Investigations on Graphite Sandwiched Grinding Wheels. Machining Science and Technology, 2003, 7, 137-155.	2.5	33
11	Investigations on the application of solid lubricants in grinding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002, 216, 1325-1343.	2.4	26
12	An investigation on surface grinding using graphite as lubricant. International Journal of Machine Tools and Manufacture, 2002, 42, 733-740.	13.4	86
13	A close look at the rough terrain of surface finish assessment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1998, 212, 411-420.	2.4	3
14	Influence of dressing feed on the performance of laser dressed Al2O3 wheel in wet grinding. International Journal of Machine Tools and Manufacture, 1995, 35, 661-671.	13.4	26
15	A study of the surface deformations in press and shrink fitted assemblies. Wear, 1994, 173, 75-83.	3.1	5
16	On the Possibility of Process Monitoring in Grinding by Spark Intensity Measurements. Journal of Engineering for Industry, 1994, 116, 124-129.	0.8	4
17	Effect of plating and temperature on the strength of shrink fitted assemblies. International Journal of Machine Tools and Manufacture, 1993, 33, 475-481.	13.4	7
18	Performance Improvement Of Shrink-Fitted Assemblies by Surface Strengthening. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1992, 206, 207-213.	2.4	8

#	Article	IF	CITATIONS
19	Investigations on Laser Dressing of Grinding Wheelsâ€"Part I: Preliminary Study. Journal of Engineering for Industry, 1989, 111, 244-252.	0.8	44
20	Investigations on Laser Dressing of Grinding Wheelsâ€"Part II: Grinding Performance of a Laser Dressed Aluminum Oxide Wheel. Journal of Engineering for Industry, 1989, 111, 253-261.	0.8	44
21	Improving the Load-Carrying Capacity of Interference Fits. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1989, 203, 83-90.	2.4	5
22	Workpiece Movement in Centerless Grinding and Its Influence on Quality of the Ground Part. Journal of Engineering for Industry, 1988, 110, 179-186.	0.8	4
23	Three-Dimensional Geometric Analysis of the Plunge Centreless Grinding Process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1987, 201, 309-320.	2.1	2
24	Optimizing workpiece position in centreless grinding by roundness profile analysis. Precision Engineering, 1987, 9, 23-30.	3.4	5
25	Frictional behaviour and its influence on quality in centreless grinding. Wear, 1987, 118, 147-160.	3.1	2
26	Influence of workpiece position on roundness error and surface finish in centreless grinding. International Journal of Machine Tools and Manufacture, 1987, 27, 77-89.	13.4	7
27	Corner Wear and Its Monitoring in Cylindrical Plunge Grinding. Journal of Vibration and Acoustics, Transactions of the ASME, 1987, 109, 309-314.	1.6	0
28	An experimental investigation on the basic mechanisms involved in ultrasonic machining. International Journal of Machine Tool Design & Research, 1986, 26, 307-321.	0.0	63
29	An investigation into the assessment of surface finish by microwave reflection. Precision Engineering, 1986, 8, 9-12.	3.4	1
30	A Method for Reducing the Corner Wear in Plunge Grinding. Proceedings of the Institution of Mechanical Engineers, Part B: Management and Engineering Manufacture, 1986, 200, 19-26.	0.3	2
31	An investigation of the role of surface irregularities in the noise spectrum of rolling and sliding contacts. Wear, 1982, 83, 399-409.	3.1	17
32	A study on the influence of grain size in electrochemical machining. International Journal of Machine Tool Design & Research, 1981, 21, 57-69.	0.0	12
33	Application of a relocation technique to the study of surface production in electrochemical machining and electrodischarge machining. Wear, 1981, 68, 1-6.	3.1	6
34	Surface condition monitoring of grinding wheels by pneumatic back-pressure measurement. Wear, 1981, 70, 219-226.	3.1	5
35	On Some Aspects of Surface Formation in ECM. Journal of Engineering for Industry, 1981, 103, 341-348.	0.8	13
36	Functional Assessment of the Grinding Wheel Surface Characteristics by Turbulence Amplifier. Journal of Engineering for Industry, 1981, 103, 99-102.	0.8	10

3

#	Article	IF	CITATIONS
37	Measurement of grinding wheel surface topography using electro-pneumatic turbulence amplifier system. International Journal of Machine Tool Design & Research, 1980, 20, 189-196.	0.0	9
38	Surface replication studies of small bores. Precision Engineering, 1980, 2, 187-194.	3.4	3
39	Filtering of surface profiles using fast fourier transform. International Journal of Machine Tool Design & Research, 1979, 19, 133-141.	0.0	24
40	Electrolyte velocity measurement using LDV in an experimental electrochemical machining setup. International Journal of Machine Tool Design & Research, 1979, 19, 157-163.	0.0	1
41	A stochastic analysis of grinding wheel and workpiece surfaces. Wear, 1979, 54, 303-313.	3.1	1
42	Analysis of surface reproduction characteristics of different replica materials. Wear, 1979, 57, 63-69.	3.1	4
43	Measurement of wear in small bores. Wear, 1978, 49, 247-252.	3.1	2
44	Surface studies in ECM using a relocating machining fixture. International Journal of Machine Tool Design & Research, 1978, 18, 1-8.	0.0	7
45	Smoothing of initial roughness in electrochemical machining. International Journal of Production Research, 1978, 16, 453-461.	7.5	8
46	Analysis and synthesis of surface profiles using Fourier series. International Journal of Machine Tool Design & Research, 1977, 17, 245-251.	0.0	25
47	Comparison of different methods for computing the two-dimensional envelope for surface finish measurements. CAD Computer Aided Design, 1976, 8, 89-93.	2.7	9
48	An analysis of the reference lines of the surface profile and its true replica. Wear, 1976, 40, 155-163.	3.1	0
49	Determination of the direct and indirect influences of groove wear and built-up edge on surface roughness in turning by multiple correlation technique. International Journal of Production Research, 1976, 14, 415-420.	7.5	1
50	Influence of surface finish on interference fits. International Journal of Production Research, 1974, 12, 705-719.	7. 5	13
51	Computation of the three-dimensional envelope for roughness measurement. International Journal of Machine Tool Design & Research, 1974, 14, 211-216.	0.0	16
52	Groove wear, built-up edge and surface roughness in turning. Wear, 1974, 30, 179-188.	3.1	15
53	Effect of side flow on the straightness of the ridge and the surface roughness. International Journal of Machine Tool Design & Research, 1973, 13, 243-255.	0.0	2
54	Significance of profile length in roughness measurements. Wear, 1973, 23, 339-347.	3.1	3

#	Article	IF	CITATIONS
55	Influence of side-flow and built-up edge on the roughness and hardness of the surface machined with a single point tool. Wear, 1973, 26, 393-403.	3.1	21
56	Characteristics of a surface machined with a single point tool. Tribology, 1973, 6, 93-96.	0.1	11
57	Selection of an enveloping circle radius for E-system roughness measurement. International Journal of Machine Tool Design & Research, 1972, 12, 151-159.	0.0	13
58	Statistical behaviour of surface profiles. Wear, 1971, 17, 259-267.	3.1	8
59	Effect of stylus radius on the roughness values measured with tracing stylus instruments. Wear, 1970, 16, 325-335.	3.1	78