Alka Saxena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10741501/publications.pdf Version: 2024-02-01

ALKA SAVENIA

#	Article	IF	CITATIONS
1	Impact of Local Alloimmunity and Recipient Cells in Transplant Arteriosclerosis. Circulation Research, 2020, 127, 974-993.	4.5	17
2	Transcriptional and Functional Analysis of CD1c+ Human Dendritic Cells Identifies a CD163+ Subset Priming CD8+CD103+ T Cells. Immunity, 2020, 53, 335-352.e8.	14.3	206
3	Engineered niches support the development of human dendritic cells in humanized mice. Nature Communications, 2020, 11, 2054.	12.8	21
4	Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2049-2066.	2.4	72
5	Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	7.6	97
6	Dynamic transcriptomic analysis reveals suppression of PGC1α/ERRα drives perturbed myogenesis in facioscapulohumeral muscular dystrophy. Human Molecular Genetics, 2019, 28, 1244-1259.	2.9	52
7	Time Series Integrative Analysis of RNA SequencingÂand MicroRNA Expression Data RevealsÂKey Biologic Wound Healing PathwaysÂinÂKeloid-Prone Individuals. Journal of Investigative Dermatology, 2018, 138, 2690-2693.	0.7	41
8	Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. Journal of Clinical Investigation, 2018, 128, 3460-3474.	8.2	57
9	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	5.3	195
10	Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nature Communications, 2017, 8, 428.	12.8	74
11	Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticityÂby HDAC inhibitors. Epigenetics and Chromatin, 2015, 8, 55.	3.9	32
12	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	12.6	517
13	Brain-specific noncoding RNAs are likely to originate in repeats and may play a role in up-regulating genes in cis. International Journal of Biochemistry and Cell Biology, 2014, 54, 331-337.	2.8	20
14	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
15	Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nature Genetics, 2014, 46, 558-566.	21.4	271
16	CAGE-defined promoter regions of the genes implicated in Rett Syndrome. BMC Genomics, 2014, 15, 1177.	2.8	10
17	piRNAs Warrant Investigation in Rett Syndrome: An Omics Perspective. Disease Markers, 2012, 33, 261-275.	1.3	23
18	Trehalose-enhanced isolation of neuronal sub-types from adult mouse brain. BioTechniques, 2012, 52, 381-385.	1.8	87

Alka Saxena

#	Article	IF	CITATIONS
19	Whole transcriptome analysis: what are we still missing?. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 527-543.	6.6	22
20	Long non oding RNA modifies chromatin. BioEssays, 2011, 33, 830-839.	2.5	177
21	Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc. Human Molecular Genetics, 2002, 11, 2319-2329.	2.9	77
22	Centromere Proteins Cenpa, Cenpb, and Bub3 Interact with Poly(ADP-ribose) Polymerase-1 Protein and Are Poly(ADP-ribosyl)ated. Journal of Biological Chemistry, 2002, 277, 26921-26926.	3.4	101