Jaakko Hollmén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10740844/publications.pdf Version: 2024-02-01

Ιλλικό Ηου ΜΑΩΝ

#	Article	IF	CITATIONS
1	Early oxygen levels contribute to brain injury in extremely preterm infants. Pediatric Research, 2021, 90, 131-139.	2.3	20
2	Clustering Diagnostic Profiles of Patients. IFIP Advances in Information and Communication Technology, 2019, , 120-126.	0.7	0
3	Gaussian process classification for prediction of in-hospital mortality among preterm infants. Neurocomputing, 2018, 298, 134-141.	5.9	19
4	A survey of evaluation methods for personal route and destination prediction from mobility traces. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1237.	6.8	6
5	Exploring epistaxis as an adverse effect of anti-thrombotic drugs and outdoor temperature. , 2018, , .		0
6	A 5.3 pJ/op approximate TTA VLIW tailored for machine learning. Microelectronics Journal, 2017, 61, 106-113.	2.0	4
7	Effects of precipitation and temperature on the growth variation of Scots pine—A case study at two extreme sites in Finland. Dendrochronologia, 2017, 46, 35-45.	2.2	9
8	Identifying the main drivers for the production and maturation of Scots pine tracheids along a temperature gradient. Agricultural and Forest Meteorology, 2017, 232, 210-224.	4.8	13
9	Multi-label methods for prediction with sequential data. Pattern Recognition, 2017, 63, 45-55.	8.1	21
10	Prediction of major complications affecting very low birth weight infants. , 2017, , .		1
11	Newtonian boreal forest ecology: The Scots pine ecosystem as an example. PLoS ONE, 2017, 12, e0177927.	2.5	4
12	Reliability of temperature signal in various climate indicators from northern Europe. PLoS ONE, 2017, 12, e0180042.	2.5	5
13	Resource Frequency Prediction in Healthcare: Machine Learning Approach. , 2016, , .		2
14	Explaining mixture models through semantic pattern mining and banded matrix visualization. Machine Learning, 2016, 105, 3-39.	5.4	7
15	Labeling sensing data for mobility modeling. Information Systems, 2016, 57, 207-222.	3.6	5
16	Optimizing regression models for data streams with missing values. Machine Learning, 2015, 99, 47-73.	5.4	17
17	Fast progressive training of mixture models for model selection. Journal of Intelligent Information Systems, 2015, 44, 223-241.	3.9	1
18	Towards Hardware-driven Design of Low-energy Algorithms for Data Analysis. SIGMOD Record, 2015, 43, 15-20.	1.2	4

Jaakko Hollmén

#	Article	IF	CITATIONS
19	Defining a mobile architecture for structural health monitoring. , 2014, , .		Ο
20	Explaining Mixture Models through Semantic Pattern Mining and Banded Matrix Visualization. Lecture Notes in Computer Science, 2014, , 1-12.	1.3	1
21	Three-way analysis of structural health monitoring data. Neurocomputing, 2012, 80, 119-128.	5.9	30
22	Structural Health Monitoring in Wireless Sensor Networks by the Embedded Goertzel Algorithm. , 2011, , .		23
23	Collaborative Filtering for Coordinated Monitoring in Sensor Networks. , 2011, , .		2
24	Photosynthesis, temperature and radial growth of Scots pine in northern Finland: identifying the influential time intervals. Trees - Structure and Function, 2011, 25, 323-332.	1.9	14
25	Forecasting Road Condition after Maintenance Works by Linear Methods and Radial Basis Function Networks. Lecture Notes in Computer Science, 2011, , 405-412.	1.3	0
26	Functional prediction of unidentified lipids using supervised classifiers. Metabolomics, 2010, 6, 18-26.	3.0	11
27	Automatic detection of onset and cessation of tree stem radius increase using dendrometer data. Neurocomputing, 2010, 73, 2039-2046.	5.9	18
28	Three-way analysis of Structural Health Monitoring data. , 2010, , .		0
29	Multi-year network level road maintenance programming by genetic algorithms and variable neighbourhood search. , 2010, , .		2
30	Preservation of Statistically Significant Patterns in Multiresolution 0-1 Data. Lecture Notes in Computer Science, 2010, , 86-97.	1.3	2
31	Patterns from multiresolution 0-1 data. , 2010, , .		6
32	Genomic Profiles Associated with Early Micrometastasis in Lung Cancer: Relevance of 4q Deletion. Clinical Cancer Research, 2009, 15, 1566-1574.	7.0	87
33	Feature Extraction and Selection from Vibration Measurements for Structural Health Monitoring. Lecture Notes in Computer Science, 2009, , 213-224.	1.3	12
34	Pathways affected by asbestos exposure in normal and tumour tissue of lung cancer patients. BMC Medical Genomics, 2008, 1, 55.	1.5	13
35	Sequential input selection algorithm for long-term prediction of time series. Neurocomputing, 2008, 71, 2604-2615.	5.9	23
36	Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis, 2008, 29, 913-917.	2.8	28

Jaakko Hollmén

#	Article	IF	CITATIONS
37	Smoothed Prediction of the Onset of Tree Stem Radius Increase Based on Temperature Patterns. Lecture Notes in Computer Science, 2008, , 100-111.	1.3	Ο
38	Modeling the effects of varying data quality on trend detection in environmental monitoring. Ecological Informatics, 2007, 2, 167-176.	5.2	18
39	Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics, 2007, 8, 62.	2.8	72
40	Mixture Modeling of DNA Copy Number Amplification Patterns in Cancer. , 2007, , 972-979.		9
41	Compact and Understandable Descriptions of Mixtures of Bernoulli Distributions. Lecture Notes in Computer Science, 2007, , 1-12.	1.3	9
42	Sparse regression for analyzing the development of foliar nutrient concentrations in coniferous trees. Ecological Modelling, 2006, 191, 118-130.	2.5	9
43	Identification of Specific Gene Copy Number Changes in Asbestos-Related Lung Cancer. Cancer Research, 2006, 66, 5737-5743.	0.9	57
44	Are N and S deposition altering the mineral composition of Norway spruce and Scots pine needles in Finland?. Environmental Pollution, 2005, 138, 5-17.	7.5	13
45	Combining Measurement Quality into Monitoring Trends in Foliar Nutrient Concentrations. Lecture Notes in Computer Science, 2005, , 761-767.	1.3	2
46	Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer. Cancer Genetics and Cytogenetics, 2004, 149, 98-106.	1.0	153
47	Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays. Journal of Pathology, 2004, 203, 584-593.	4.5	50
48	Evaluation of forest nutrition based on large-scale foliar surveys: are nutrition profiles the way of the future?. Journal of Environmental Monitoring, 2004, 6, 160-167.	2.1	21
49	Mixture models and frequent sets: combining global and local methods for 0â \in "1 data. , 2003, , .		13
50	Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene, 2002, 21, 5804-5813.	5.9	168
51	An Automated Report Generation Tool for the Data Understanding Phase. , 2002, , 611-625.		9
52	Process Monitoring and Modeling Using the Self-Organizing Map. Integrated Computer-Aided Engineering, 1999, 6, 3-14.	4.6	164