
Daniel Borcard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10740597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Partialling out the Spatial Component of Ecological Variation. Ecology, 1992, 73, 1045-1055.	3.2	3,619
2	VARIATION PARTITIONING OF SPECIES DATA MATRICES: ESTIMATION AND COMPARISON OF FRACTIONS. Ecology, 2006, 87, 2614-2625.	3.2	1,875
3	FORWARD SELECTION OF EXPLANATORY VARIABLES. Ecology, 2008, 89, 2623-2632.	3.2	1,766
4	Numerical Ecology with R. , 2011, , .		1,684
5	All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 2002, 153, 51-68.	2.5	1,671
6	ANALYZING BETA DIVERSITY: PARTITIONING THE SPATIAL VARIATION OF COMMUNITY COMPOSITION DATA. Ecological Monographs, 2005, 75, 435-450.	5.4	1,014
7	DISSECTING THE SPATIAL STRUCTURE OF ECOLOGICAL DATA AT MULTIPLE SCALES. Ecology, 2004, 85, 1826-1832.	3.2	778
8	Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1994, 1, 37-61.	3.5	279
9	Should the Mantel test be used in spatial analysis?. Methods in Ecology and Evolution, 2015, 6, 1239-1247.	5.2	276
10	Modelling directional spatial processes in ecological data. Ecological Modelling, 2008, 215, 325-336.	2.5	261
11	Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 2008, 155, 593-604.	2.0	178
12	ls the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology, 2012, 93, 1473-1481.	3.2	161
13	Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology, 2012, 93, 1234-1240.	3.2	92
14	Community surveys through space and time: testing the space–time interaction in the absence of replication. Ecology, 2010, 91, 262-272.	3.2	84
15	ANALYZING OR EXPLAINING BETA DIVERSITY? COMMENT. Ecology, 2008, 89, 3238-3244.	3.2	81
16	Title is missing!. Environmental and Ecological Statistics, 1998, 5, 1-27.	3.5	68
17	Box–Coxâ€chord transformations for community composition data prior to beta diversity analysis. Ecography, 2018, 41, 1820-1824.	4.5	67
18	SPATIAL ORGANIZATION OF A HERPETOFAUNA ON AN ELEVATIONAL GRADIENT REVEALED BY NULL MODEL TESTS. Ecology, 1999, 80, 976-988.	3.2	62

DANIEL BORCARD

#	Article	IF	CITATIONS
19	Multiscale spatial distribution of a littoral fish community in relation to environmental variables. Limnology and Oceanography, 2005, 50, 465-479.	3.1	59
20	A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances. Landscape Ecology, 2014, 29, 1-16.	4.2	44
21	Canonical Ordination. , 2011, , 153-225.		39
22	Using paleoecology to improve reference conditions for ecosystem-based management in western spruce-moss subdomain of Québec. Forest Ecology and Management, 2018, 430, 157-165.	3.2	30
23	Relating niche and spatial overlap at the community level. Oikos, 2004, 106, 366-376.	2.7	29
24	Ecotones and gradient as determinants of herpetofaunal community structure in the primary forest of Mount Kupe, Cameroon. Journal of Tropical Ecology, 2000, 16, 517-533.	1.1	26
25	Cascade multivariate regression tree: a novel approach for modelling nested explanatory sets. Methods in Ecology and Evolution, 2012, 3, 234-244.	5.2	23
26	Oribatid mites (Acari, Oribatida) of a primary peat bog-pasture transition in the Swiss Jura mountains. Ecoscience, 1997, 4, 470-479.	1.4	22
27	Canonical Ordination. Use R!, 2018, , 203-297.	0.2	21
28	Spatial Analysis of Ecological Data. Use R!, 2018, , 299-367.	0.2	20
29	Effects of dry grassland management on spider (Arachnida: Araneae) communities on the Swiss occidental plateau. Ecoscience, 2001, 8, 32-44.	1.4	12
30	Toward management guidelines for soybean aphid, Aphis glycines, in Quebec. II. Spatial distribution of aphid populations in commercial soybean fields. Canadian Entomologist, 2008, 140, 219-234.	0.8	10
31	Drivers of contemporary landscape vegetation heterogeneity in the Canadian boreal forest: Integrating disturbances (natural and human) with climate and physical environment. Ecoscience, 2014, 21, 340-373.	1.4	4
32	Association Measures and Matrices. Use R!, 2018, , 35-57.	0.2	4
33	Community Diversity. Use R!, 2018, , 369-412.	0.2	4