Joan Heller Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10740001/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Coâ€occurrence of <i>BAP1</i> and <i>SF3B1</i> mutations in uveal melanoma induces cellular senescence. Molecular Oncology, 2022, 16, 607-629.	4.6	12
2	Splicing and Dicing: A Deeper Dive Into CaMKIIδ and Cardiac Inflammation. Circulation Research, 2022, 130, 904-906.	4.5	1
3	Effects of mango and mint pod-based e-cigarette aerosol inhalation on inflammatory states of the brain, lung, heart, and colon in mice. ELife, 2022, 11, .	6.0	22
4	RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria. Cell Death and Differentiation, 2022, 29, 2472-2486.	11.2	12
5	The contribution of the cardiomyocyte to tissue inflammation in cardiomyopathies. Current Opinion in Physiology, 2021, 19, 129-134.	1.8	6
6	Spatiotemporal restriction of endothelial cell calcium signaling is required during leukocyte transmigration. Journal of Experimental Medicine, 2021, 218, .	8.5	17
7	SiglecF(HI) Marks Lateâ€Stage Neutrophils of the Infarcted Heart: A Singleâ€Cell Transcriptomic Analysis of Neutrophil Diversification. Journal of the American Heart Association, 2021, 10, e019019.	3.7	41
8	ATPase Inhibitory Factor-1 Disrupts Mitochondrial Ca2+ Handling and Promotes Pathological Cardiac Hypertrophy through CaMKIII´. International Journal of Molecular Sciences, 2021, 22, 4427.	4.1	9
9	Histamine-induced biphasic activation of RhoA allows for persistent RhoA signaling. PLoS Biology, 2020, 18, e3000866.	5.6	6
10	CaMKIIδC Drives Early Adaptive Ca 2+ Change and Late Eccentric Cardiac Hypertrophy. Circulation Research, 2020, 127, 1159-1178.	4.5	31
11	Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via <i>O</i> -linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circulation Research, 2020, 126, e80-e96.	4.5	82
12	Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H877-H890.	3.2	54
13	CaMKIIÎ ⁻ -mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight, 2018, 3, .	5.0	88
14	Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca ²⁺ /Calmodulin-Dependent Protein Kinase II δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation, 2018, 138, 2530-2544.	1.6	200
15	RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes. Cellular Signalling, 2018, 50, 48-57.	3.6	49
16	Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R834-R847.	1.8	152
17	YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene, 2018, 37, 5492-5507.	5.9	49
18	A secretory pathway kinase regulates sarcoplasmic reticulum Ca2+ homeostasis and protects against heart failure. ELife, 2018, 7, .	6.0	22

#	Article	IF	CITATIONS
19	RhoA mediated transcriptional pathways in tumor cell growth. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY84-1.	0.0	0
20	Calcium/Calmodulinâ€dependent Protein Kinase II (CaMKII) Signaling in Cardiomyocytes Initiates Inflammatory Responses Required for Adverse Cardiac Remodeling in Response to Pressure Overload FASEB Journal, 2018, 32, 698.4.	0.5	0
21	CaMKIIδ subtypes differentially regulate infarct formation following ex vivo myocardial ischemia/reperfusion through NF-I®B and TNF-α. Journal of Molecular and Cellular Cardiology, 2017, 103, 48-55.	1.9	62
22	Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes. Journal of Neuroinflammation, 2017, 14, 111.	7.2	79
23	Selective coupling of the S1P 3 receptor subtype to S1P-mediated RhoA activation and cardioprotection. Journal of Molecular and Cellular Cardiology, 2017, 103, 1-10.	1.9	33
24	Decline in cellular function of aged mouse câ€kit ⁺ cardiac progenitor cells. Journal of Physiology, 2017, 595, 6249-6262.	2.9	25
25	Bitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction. Molecular Pharmacology, 2016, 89, 176-186.	2.3	41
26	Exercise training reverses myocardial dysfunction induced by CaMKIIδ _C overexpression by restoring Ca ²⁺ homeostasis. Journal of Applied Physiology, 2016, 121, 212-220.	2.5	14
27	Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs. Cellular Signalling, 2016, 28, 871-879.	3.6	15
28	Drp1 and Mitochondrial Autophagy Lend a Helping Hand in Adaptation to Pressure Overload. Circulation, 2016, 133, 1225-1227.	1.6	7
29	Myocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation. Molecular and Cellular Biology, 2016, 36, 39-49.	2.3	82
30	Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB. Journal of Biological Chemistry, 2016, 291, 4156-4165.	3.4	19
31	Thrombin Promotes Sustained Signaling and Inflammatory Gene Expression through the CDC25 and Ras-associating Domains of Phospholipase Cïµ. Journal of Biological Chemistry, 2015, 290, 26776-26783.	3.4	16
32	The First 50 Years of Molecular Pharmacology. Molecular Pharmacology, 2015, 88, 139-140.	2.3	4
33	Mitochondrial Reprogramming Induced by CaMKIIδ Mediates Hypertrophy Decompensation. Circulation Research, 2015, 116, e28-39.	4.5	47
34	CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca2+ leak and the pathophysiological response to chronic β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 2015, 85, 282-291.	1.9	69
35	G Protein–Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. Molecular Pharmacology, 2015, 88, 171-180.	2.3	93
36	PLCε mediated sustained signaling pathways. Advances in Biological Regulation, 2015, 57, 17-23.	2.3	26

#	Article	IF	CITATIONS
37	CaMKIIdelta subtypes: localization and function. Frontiers in Pharmacology, 2014, 5, 15.	3.5	67
38	<scp>CaMKII</scp> confirms its promise in ischaemic heart disease. European Journal of Heart Failure, 2014, 16, 1268-1269.	7.1	3
39	In vivo selective expression of thyroid hormone receptor α1 in endothelial cells attenuates myocardial injury in experimental myocardial infarction in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R340-R346.	1.8	21
40	Nonequilibrium Reactivation of Na + Current Drives Early Afterdepolarizations in Mouse Ventricle. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 1205-1213.	4.8	42
41	The Ras-related Protein, Rap1A, Mediates Thrombin-stimulated, Integrin-dependent Glioblastoma Cell Proliferation and Tumor Growth. Journal of Biological Chemistry, 2014, 289, 17689-17698.	3.4	47
42	Intracellular signalling mechanism responsible for modulation of sarcolemmal ATPâ€sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. Journal of Physiology, 2014, 592, 971-990.	2.9	48
43	CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2014, 74, 274-283.	1.9	61
44	Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. Journal of Molecular and Cellular Cardiology, 2014, 75, 152-161.	1.9	29
45	PLCÎμ, PKD1, and SSH1L Transduce RhoA Signaling to Protect Mitochondria from Oxidative Stress in the Heart. Science Signaling, 2013, 6, ra108.	3.6	54
46	Ca ²⁺ /Calmodulin-Dependent Protein Kinase II δ Mediates Myocardial Ischemia/Reperfusion Injury Through Nuclear Factor-κB. Circulation Research, 2013, 112, 935-944.	4.5	148
47	Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 213-222.	2.4	68
48	Epac2 Mediates Cardiac β1-Adrenergic–Dependent Sarcoplasmic Reticulum Ca ²⁺ Leak and Arrhythmia. Circulation, 2013, 127, 913-922.	1.6	145
49	The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opinion on Therapeutic Targets, 2013, 17, 889-903.	3.4	26
50	Phospholipase CÉ› links G protein-coupled receptor activation to inflammatory astrocytic responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3609-3614.	7.1	70
51	RhoA and Rap1 mediate GPCR crosstalk to integrins and cell growth. FASEB Journal, 2013, 27, 338.1.	0.5	0
52	Regulation of the Hippo–YAP pathway by protease-activated receptors (PARs). Genes and Development, 2012, 26, 2138-2143.	5.9	239
53	APJ acts as a dual receptor in cardiac hypertrophy. Nature, 2012, 488, 394-398.	27.8	204
54	CaMKIIδC Slows [Ca]i Decline in Cardiac Myocytes by Promoting Ca Sparks. Biophysical Journal, 2012, 102, 2461-2470.	0.5	28

#	Article	IF	CITATIONS
55	Identification of Potential Small Molecule Binding Pockets on Rho Family GTPases. PLoS ONE, 2012, 7, e40809.	2.5	15
56	Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cellular Signalling, 2012, 24, 1333-1343.	3.6	130
57	Thrombin stimulated glioblastoma cell adhesion is mediated by Rap1 and integrin activation. FASEB Journal, 2012, 26, 664.8.	0.5	Ο
58	S1P induces CCN1 expression through RhoA/MRTFâ€a activation and protects cardiomyocytes against cell death. FASEB Journal, 2012, 26, 1060.4.	0.5	0
59	Crossing signals: relationships between β-adrenergic stimulation and CaMKII activation. Heart Rhythm, 2011, 8, 1296-1298.	0.7	17
60	Overexpression of CaMKIIδc in RyR2R4496C+/☒ Knock-In Mice Leads to Altered Intracellular Ca2+ Handling and Increased Mortality. Journal of the American College of Cardiology, 2011, 57, 469-479.	2.8	34
61	CaMKII in myocardial hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 2011, 51, 468-473.	1.9	383
62	RhoA protects the mouse heart against ischemia/reperfusion injury. Journal of Clinical Investigation, 2011, 121, 3269-3276.	8.2	83
63	Location Matters. Circulation Research, 2011, 109, 1354-1362.	4.5	70
64	Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. European Heart Journal, 2011, 32, 2179-2188.	2.2	79
65	A Critical Function for Ser-282 in Cardiac Myosin Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2011, 109, 141-150.	4.5	113
66	Novel Allosteric Sites on Ras for Lead Generation. PLoS ONE, 2011, 6, e25711.	2.5	155
67	RhoA activates protein kinase D leading to cardioprotection against ischemia/reperfusion. FASEB Journal, 2011, 25, 1085.11.	0.5	0
68	Cardiac Hypertrophy and Heart Failure Development Through Gq and CaM Kinase II Signaling. Journal of Cardiovascular Pharmacology, 2010, 56, 598-603.	1.9	48
69	Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?. Journal of Cardiovascular Translational Research, 2010, 3, 330-343.	2.4	44
70	Phospholamban Ablation Rescues Sarcoplasmic Reticulum Ca ²⁺ Handling but Exacerbates Cardiac Dysfunction in CaMKIIδ _C Transgenic Mice. Circulation Research, 2010, 106, 354-362.	4.5	95
71	PHLPP-1 Negatively Regulates Akt Activity and Survival in the Heart. Circulation Research, 2010, 107, 476-484.	4.5	115
72	β-Adrenergic receptor signaling in the heart: Role of CaMKII. Journal of Molecular and Cellular Cardiology, 2010, 48, 322-330.	1.9	198

#	Article	IF	CITATIONS
73	β-Adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKII/AP-1 signaling pathway in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2010, 48, 342-351.	1.9	34
74	MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. Journal of Clinical Investigation, 2010, 120, 2805-2816.	8.2	291
75	Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. Journal of Clinical Investigation, 2010, 120, 3680-3687.	8.2	333
76	Inducible cardiacâ€specific RhoAâ€expression protects against ischemia/reperfusion injury in mouse hearts. FASEB Journal, 2010, 24, 573.11.	0.5	0
77	Thrombin mediated PAR1 stimulation results in sustained activation of Rap1 and downstream responses in human 1321N1 astroglioma cells. FASEB Journal, 2010, 24, 769.16.	0.5	0
78	Akt Increases Sarcoplasmic Reticulum Ca2+ Cycling by Direct Phosphorylation of Phospholamban at Thr17. Journal of Biological Chemistry, 2009, 284, 28180-28187.	3.4	62
79	Calcium/Calmodulin-Dependent Protein Kinase II Contributes to Cardiac Arrhythmogenesis in Heart Failure. Circulation: Heart Failure, 2009, 2, 664-675.	3.9	158
80	Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability. Journal of Cell Biology, 2009, 184, 923-933.	5.2	101
81	Cardioprotective stimuli mediate phosphoinositide 3-kinase and phosphoinositide dependent kinase 1 nuclear accumulation in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2009, 47, 96-103.	1.9	18
82	Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 2009, 41, 169-180.	2.3	90
83	Endoplasmic reticulum–mitochondria crosstalk in NIX-mediated murine cell death. Journal of Clinical Investigation, 2009, 119, 203-12.	8.2	115
84	Requirement for Ca2+/calmodulin–dependent kinase II in the transition from pressure overload–induced cardiac hypertrophy to heart failure in mice. Journal of Clinical Investigation, 2009, 119, 1230-1240.	8.2	333
85	Akt regulates L-type Ca2+channel activity by modulating Cavα1 protein stability. Journal of General Physiology, 2009, 133, i4-i4.	1.9	1
86	Pulsatile equibiaxial stretch inhibits thrombin-induced RhoA and NF-κB activation. Biochemical and Biophysical Research Communications, 2008, 372, 216-220.	2.1	3
87	Sphingosine-1-phosphate receptor signalling in the heart. Cardiovascular Research, 2008, 82, 193-200.	3.8	217
88	S1P1 Receptor Localization Confers Selectivity for Gi-mediated cAMP and Contractile Responses. Journal of Biological Chemistry, 2008, 283, 11954-11963.	3.4	71
89	Focal Adhesion Kinase as a RhoA-activable Signaling Scaffold Mediating Akt Activation and Cardiomyocyte Protection. Journal of Biological Chemistry, 2008, 283, 35622-35629.	3.4	96
90	Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteineâ€rich protein 61. FASEB Journal, 2008, 22, 4011-4021.	0.5	43

#	Article	IF	CITATIONS
91	Lipid signalling in cardiovascular pathophysiology. Cardiovascular Research, 2008, 82, 171-174.	3.8	5
92	G Protein-Coupled Receptors Go Extracellular: RhoA Integrates the Integrins. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2008, 8, 165-173.	3.4	36
93	An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. Journal of Clinical Investigation, 2008, 118, 3870-3880.	8.2	211
94	S1P receptor localization confers selectivity for G i mediated signaling pathways. FASEB Journal, 2008, 22, 727.6.	0.5	0
95	Impact of CaMKII Localization on Function. FASEB Journal, 2008, 22, 911.2.	O.5	Ο
96	Thrombin mediated regulation of CCN1 regulates cell proliferation in an integrin dependent manner. FASEB Journal, 2008, 22, 1044.13.	0.5	0
97	Role of calmodulin kinase II in inotropic effect of α 1 â€∎drenergic stimulation in the heart. FASEB Journal, 2008, 22, 970.18.	0.5	0
98	Tumor Necrosis Factor-α-stimulated Cell Proliferation Is Mediated through Sphingosine Kinase-dependent Akt Activation and Cyclin D Expression. Journal of Biological Chemistry, 2007, 282, 863-870.	3.4	66
99	RhoA/Rho Kinase Up-regulate Bax to Activate a Mitochondrial Death Pathway and Induce Cardiomyocyte Apoptosis. Journal of Biological Chemistry, 2007, 282, 8069-8078.	3.4	124
100	Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2944-H2951.	3.2	210
101	Calmodulin and Ca2+/calmodulin kinases in the heart – Physiology and pathophysiology. Cardiovascular Research, 2007, 73, 629-630.	3.8	30
102	Phospholipase Cε is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15543-15548.	7.1	67
103	CaMKIIδ Isoforms Differentially Affect Calcium Handling but Similarly Regulate HDAC/MEF2 Transcriptional Responses. Journal of Biological Chemistry, 2007, 282, 35078-35087.	3.4	182
104	Gαq expression activates EGFR andÂinduces Akt mediated cardiomyocyte survival: dissociation from Gαq mediated hypertrophy. Journal of Molecular and Cellular Cardiology, 2006, 40, 597-604.	1.9	36
105	Increased Sarcoplasmic Reticulum Calcium Leak but Unaltered Contractility by Acute CaMKII Overexpression in Isolated Rabbit Cardiac Myocytes. Circulation Research, 2006, 98, 235-244.	4.5	171
106	The Rac and Rho Hall of Fame. Circulation Research, 2006, 98, 730-742.	4.5	311
107	Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. Journal of Clinical Investigation, 2006, 116, 675-682.	8.2	427
108	Rho Kinase Polymorphism Influences Blood Pressure and Systemic Vascular Resistance in Human Twins. Hypertension, 2006, 47, 937-947.	2.7	70

#	Article	IF	CITATIONS
109	Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. Journal of Clinical Investigation, 2006, 116, 3127-3138.	8.2	474
110	Phospholamban Ablation Rescues SR Ca2+ Loading But Not Cardiac Function In CaMKIIλC Transgenic Mice. FASEB Journal, 2006, 20, A1124.	0.5	0
111	Activated RhoA Induces Cardiomyocyte Apoptosis via a Mitochondrial Death Pathway. FASEB Journal, 2006, 20, A234.	0.5	0
112	Role of S1P signaling in TNFâ€mediated 1321N1 cell proliferation. FASEB Journal, 2006, 20, A697.	0.5	0
113	Ca2+ Dysregulation Induces Mitochondrial Depolarization and Apoptosis. Journal of Biological Chemistry, 2005, 280, 38505-38512.	3.4	57
114	Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovascular Research, 2004, 63, 476-486.	3.8	259
115	Rho-mediated cytoskeletal rearrangement in response to LPA is functionally antagonized by Rac1 and PIP2. Journal of Neurochemistry, 2004, 91, 501-512.	3.9	32
116	G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. Journal of Cellular Biochemistry, 2004, 92, 949-966.	2.6	181
117	Cardiovascular Signaling Pathways. , 2004, , 123-174.		0
118	Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. Journal of Molecular and Cellular Cardiology, 2004, 36, 481-493.	1.9	60
119	RHO SIGNALING in Vascular Diseases. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 348-357.	3.4	62
120	Cardiomyocyte Calcium and Calcium/Calmodulin-dependent Protein Kinase II: Friends or Foes?. Endocrine Reviews, 2004, 59, 141-168.	6.7	56
121	RGS16 inhibits signalling through the Gα13–Rho axis. Nature Cell Biology, 2003, 5, 1095-1103.	10.3	41
122	UTP but not ATP causes hypertrophic growth in neonatal rat cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2003, 35, 287-292.	1.9	21
123	Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2003, 35, 1217-1227.	1.9	46
124	Protein kinase CÉ>-dependent activation of proline-rich tyrosine kinase 2Âin neonatal rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2003, 35, 1121-1133.	1.9	31
125	Inhibition of Cardiac Myocyte Apoptosis Improves Cardiac Function and Abolishes Mortality in the Peripartum Cardiomyopathy of Gαq Transgenic Mice. Circulation, 2003, 108, 3036-3041.	1.6	205
126	Transgenic CaMKIIÎ COverexpression Uniquely Alters Cardiac Myocyte Ca2+Handling. Circulation Research, 2003, 92, 904-911.	4.5	409

#	Article	IF	CITATIONS
127	Initiation and Transduction of Stretch-induced RhoA and Rac1 Activation through Caveolae. Journal of Biological Chemistry, 2003, 278, 31111-31117.	3.4	181
128	Akt-mediated Cardiomyocyte Survival Pathways Are Compromised by Cαq-induced Phosphoinositide 4,5-Bisphosphate Depletion. Journal of Biological Chemistry, 2003, 278, 40343-40351.	3.4	68
129	The δCIsoform of CaMKII Is Activated in Cardiac Hypertrophy and Induces Dilated Cardiomyopathy and Heart Failure. Circulation Research, 2003, 92, 912-919.	4.5	528
130	Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A–independent activation of Ca2+/calmodulin kinase II. Journal of Clinical Investigation, 2003, 111, 617-625.	8.2	215
131	Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A–independent activation of Ca2+/calmodulin kinase II. Journal of Clinical Investigation, 2003, 111, 617-625.	8.2	336
132	The Cardiac-specific Nuclear δB Isoform of Ca2+/Calmodulin-dependent Protein Kinase II Induces Hypertrophy and Dilated Cardiomyopathy Associated with Increased Protein Phosphatase 2A Activity. Journal of Biological Chemistry, 2002, 277, 1261-1267.	3.4	219
133	c-Jun N-Terminal Kinase Activation Mediates Downregulation of Connexin43 in Cardiomyocytes. Circulation Research, 2002, 91, 640-647.	4.5	134
134	Marked Perinatal Lethality and Cellular Signaling Deficits in Mice Null for the Two Sphingosine 1-Phosphate (S1P) Receptors, S1P2/LPB2/EDG-5 and S1P3/LPB3/EDG-3. Journal of Biological Chemistry, 2002, 277, 25152-25159.	3.4	224
135	Inositol Polyphosphate 1-Phosphatase Is a Novel Antihypertrophic Factor. Journal of Biological Chemistry, 2002, 277, 22734-22742.	3.4	33
136	Characterization of <i>lpa₂</i> (<i>Edg4</i>) and <i>lpa₁</i> / <i>lpa₂</i> (<i>Edg2/Edg4</i>) Lysophosphatidic Acid Receptor Knockout Mice: Signaling Deficits without Obvious Phenotypic Abnormality Attributable to <i>lpa₂</i> . Molecular and Cellular Biology, 2002, 22, 6921-6929.	2.3	300
137	G-proteins in growth and apoptosis: lessons from the heart. Oncogene, 2001, 20, 1626-1634.	5.9	107
138	Selective Loss of Sphingosine 1-Phosphate Signaling with No Obvious Phenotypic Abnormality in Mice Lacking Its G Protein-coupled Receptor, LPB3/EDG-3. Journal of Biological Chemistry, 2001, 276, 33697-33704.	3.4	251
139	Physical and Functional Interactions of Gαq with Rho and Its Exchange Factors. Journal of Biological Chemistry, 2001, 276, 15445-15452.	3.4	86
140	Increased Expression and Activity of RhoA Are Associated With Increased DNA Synthesis and Reduced p27 ^{Kip1} Expression in the Vasculature of Hypertensive Rats. Circulation Research, 2001, 89, 488-495.	4.5	125
141	The Rho effector, PKN, regulates ANF gene transcription in cardiomyocytes through a serum response element. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1769-H1774.	3.2	45
142	Cardiomyocyte Apoptosis Induced by Gαq Signaling Is Mediated by Permeability Transition Pore Formation and Activation of the Mitochondrial Death Pathway. Circulation Research, 2000, 87, 1180-1187.	4.5	111
143	The Role of Rho in G Protein-Coupled Receptor Signal Transduction. Annual Review of Pharmacology and Toxicology, 2000, 40, 459-489.	9.4	339
144	Pertussis Toxin-Sensitive and -Insensitive Thrombin Stimulation of Shc Phosphorylation and Mitogenesis Are Mediated through Distinct Pathways. Molecular Endocrinology, 1999, 13, 1988-2001.	3.7	15

#	Article	IF	CITATIONS
145	Rho and Rho Kinase Mediate Thrombin-Stimulated Vascular Smooth Muscle Cell DNA Synthesis and Migration. Circulation Research, 1999, 84, 1186-1193.	4.5	254
146	A Rho Exchange Factor Mediates Thrombin and G $\hat{l}\pm 12$ -induced Cytoskeletal Responses. Journal of Biological Chemistry, 1999, 274, 26815-26821.	3.4	94
147	Gq Signaling in Cardiac Adaptation and Maladaptation. Trends in Cardiovascular Medicine, 1999, 9, 26-34.	4.9	157
148	Rho as a Mediator of G Protein-Coupled Receptor Signaling. Molecular Pharmacology, 1999, 55, 949-956.	2.3	224
149	Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. Journal of Clinical Investigation, 1999, 103, 1627-1634.	8.2	232
150	Pertussis Toxin-Sensitive and -Insensitive Thrombin Stimulation of Shc Phosphorylation and Mitogenesis Are Mediated through Distinct Pathways. Molecular Endocrinology, 1999, 13, 1988-2001.	3.7	6
151	Tyrosine Kinase and c-Jun NH ₂ -Terminal Kinase Mediate Hypertrophic Responses to Prostaglandin F _{2α} in Cultured Neonatal Rat Ventricular Myocytes. Circulation Research, 1998, 83, 167-178.	4.5	62
152	Requirement for Rho-mediated Myosin Light Chain Phosphorylation in Thrombin-stimulated Cell Rounding and Its Dissociation from Mitogenesis. Journal of Biological Chemistry, 1998, 273, 10099-10106.	3.4	74
153	Cardiac Muscle Cell Hypertrophy and Apoptosis Induced by Distinct Members of the p38 Mitogen-activated Protein Kinase Family. Journal of Biological Chemistry, 1998, 273, 2161-2168.	3.4	766
154	The Low Molecular Weight GTPase Rho Regulates Myofibril Formation and Organization in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 1998, 273, 7725-7730.	3.4	176
155	Cardiac Hypertrophy Induced by Mitogen-activated Protein Kinase Kinase 7, a Specific Activator for c-Jun NH2-terminal Kinase in Ventricular Muscle Cells. Journal of Biological Chemistry, 1998, 273, 5423-5426.	3.4	303
156	The Nuclear δB Isoform of Ca2+/Calmodulin-dependent Protein Kinase II Regulates Atrial Natriuretic Factor Gene Expression in Ventricular Myocytes. Journal of Biological Chemistry, 1997, 272, 31203-31208.	3.4	187
157	The MEKK-JNK Pathway Is Stimulated by α1-Adrenergic Receptor and Ras Activation and Is Associated with in Vitro and in Vivo Cardiac Hypertrophy. Journal of Biological Chemistry, 1997, 272, 14057-14061.	3.4	211
158	Cardiotrophin 1 (CT-1) Inhibition of Cardiac Myocyte Apoptosis via a Mitogen-activated Protein Kinase-dependent Pathway. Journal of Biological Chemistry, 1997, 272, 5783-5791.	3.4	370
159	Pathways and roadblocks in muscarinic receptor-mediated growth regulation. Life Sciences, 1997, 60, 1077-1084.	4.3	16
160	The G12 coupled thrombin receptor stimulates mitogenesis through the Shc SH2 domain. Oncogene, 1997, 15, 595-600.	5.9	32
161	Rho Is Required for Gαq and α1-Adrenergic Receptor Signaling in Cardiomyocytes. Journal of Biological Chemistry, 1996, 271, 31185-31190.	3.4	197
162	G protein oupled receptors and signaling pathways regulating growth responses ¹ . FASEB Journal, 1996, 10, 741-749.	0.5	215

Joan Heller Brown

#	Article	IF	CITATIONS
163	Cα12 Stimulates c-Jun NH2-terminal Kinase through the Small G Proteins Ras and Rac. Journal of Biological Chemistry, 1996, 271, 17349-17353.	3.4	146
164	Dissociation of p44 and p42 Mitogen-activated Protein Kinase Activation from Receptor-induced Hypertrophy in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 1996, 271, 8452-8457.	3.4	160
165	M1Muscarinic Receptors Heterologously Expressed in Cardiac Myocytes Mediate Ras-dependent Changes in Gene Expression. Journal of Biological Chemistry, 1995, 270, 8446-8451.	3.4	26
166	G12 Requirement for Thrombin-stimulated Gene Expression and DNA Synthesis in 1321N1 Astrocytoma Cells. Journal of Biological Chemistry, 1995, 270, 20073-20077.	3.4	88
167	Phosphoinositide-generated second messengers in cardiac signal transduction. Trends in Cardiovascular Medicine, 1992, 2, 209-214.	4.9	31
168	Muscarinic Cholinergic Receptor Regulation of Inositol Phospholipid Metabolism and Calcium Mobilization. , 1989, , 259-307.		5
169	A 22 kDaras-related G-protein is the substrate for an ADP-ribosyltransferase fromClostridium botulinum. FEBS Letters, 1988, 238, 22-26.	2.8	9
170	Differences and Similarities in Muscarinic Receptors of Rat Heart and Retina: Effects of Agonists, Guanine Nucleotides, and N-Ethylmaleimide. Journal of Neurochemistry, 1984, 43, 214-220.	3.9	25
171	Does phosphoinositide hydrolysis mediate â€~inhibitory' as well as â€~excitatory' muscarinic responses?. Trends in Pharmacological Sciences, 1984, 5, 417-419.	8.7	28
172	Muscarinic-dopaminergic synergism on retinal cyclic AMP formation. Brain Research, 1981, 215, 388-392.	2.2	30
173	Dephosphorylation and activation of exogenous glycogen synthase by adipose-tissue phosphatase. Biochemical Journal, 1980, 188, 221-228.	3.7	7
174	INFLUENCE OF ERGOT DERIVATIVES ON THE DIFFERENT TYPES OF DOPAMINE RECEPTORS AND ON OTHER AMINE RECEPTORS IN PRIMATE BRAIN. , 1979, , 101-114.		0
175	Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina. Journal of Neurochemistry, 1973, 21, 477-479.	3.9	105