Jeffrey G Linger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10739427/publications.pdf

Version: 2024-02-01

516710 888059 2,047 18 16 17 citations h-index g-index papers 18 18 18 2649 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12013-12018.	7.1	652
2	Adipic acid production from lignin. Energy and Environmental Science, 2015, 8, 617-628.	30.8	499
3	The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 3196-3211.	6.7	121
4	Heterologous Expression and Extracellular Secretion of Cellulolytic Enzymes by <i>Zymomonas mobilis < /i>. Applied and Environmental Microbiology, 2010, 76, 6360-6369.</i>	3.1	99
5	Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metabolic Engineering Communications, 2017, 5, 19-25.	3.6	93
6	Intracellular pathways for lignin catabolism in white-rot fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	82
7	Distinct roles of N- and O-glycans in cellulase activity and stability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13667-13672.	7.1	76
8	Engineering enhanced cellobiohydrolase activity. Nature Communications, 2018, 9, 1186.	12.8	72
9	Development of a high-productivity, halophilic, thermotolerant microalga Picochlorum renovo. Communications Biology, 2019, 2, 388.	4.4	58
10	Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7105-7110.	7.1	52
11	Integrated diesel production from lignocellulosic sugars <i>via</i> oleaginous yeast. Green Chemistry, 2018, 20, 4349-4365.	9.0	48
12	Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnology for Biofuels, 2015, 8, 55.	6.2	44
13	Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440. Metabolic Engineering Communications, 2016, 3, 24-29.	3.6	40
14	A versatile 2A peptide-based bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei. Biotechnology for Biofuels, 2017, 10, 34.	6.2	37
15	A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina. Biotechnology for Biofuels, 2015, 8, 45.	6.2	32
16	Biotechnology for secure biocontainment designs in an emerging bioeconomy. Current Opinion in Biotechnology, 2021, 71, 25-31.	6.6	23
17	Process intensification for the biological production of the fuel precursor butyric acid from biomass. Cell Reports Physical Science, 2021, 2, 100587.	5.6	12
18	Consolidated Bioprocessing. , 2013, , 267-280.		7