Kahraman Tanriverdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10739289/publications.pdf

Version: 2024-02-01

147566 182168 3,108 51 31 51 citations h-index g-index papers 52 52 52 6956 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Translational Model for Venous Thromboembolism: MicroRNA Expression in Hibernating Black Bears. Journal of Surgical Research, 2021, 257, 203-212.	0.8	6
2	The Dynamic Platelet Transcriptome in Obesity and Weight Loss. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 854-864.	1.1	15
3	SARS-CoV-2 Initiates Programmed Cell Death in Platelets. Circulation Research, 2021, 129, 631-646.	2.0	126
4	Epigenome-wide association study of DNA methylation and microRNA expression highlights novel pathways for human complex traits. Epigenetics, 2020, 15, 183-198.	1.3	15
5	Relations between plasma microRNAs, echocardiographic markers of atrial remodeling, and atrial fibrillation: Data from the Framingham Offspring study. PLoS ONE, 2020, 15, e0236960.	1.1	10
6	Micro-RNAs Are Related to Epicardial Adipose Tissue in Participants With Atrial Fibrillation: Data From the MiRhythm Study. Frontiers in Cardiovascular Medicine, 2019, 6, 115.	1.1	17
7	Pollen-derived RNAs Are Found in the Human Circulation. IScience, 2019, 19, 916-926.	1.9	7
8	Circulating microRNAs miR-331 and miR-195 differentiate local luminal a from metastatic breast cancer. BMC Cancer, 2019, 19, 436.	1.1	68
9	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	13.5	152
10	Identifying miRNA Biomarkers and Predicted Targets Associated with Venous Thromboembolism in Colorectal Cancer Patients. Blood, 2019, 134, 3643-3643.	0.6	5
11	Circulating extracellular RNAs, myocardial remodeling, and heart failure in patients with acute coronary syndrome. Journal of Clinical and Translational Research, 2019, 5, 33-43.	0.3	4
12	Ageâ€associated micro <scp>RNA</scp> expression in human peripheral blood is associated with allâ€cause mortality and ageâ€related traits. Aging Cell, 2018, 17, e12687.	3.0	114
13	Unique Circulating MicroRNA Profiles in HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 79, 644-650.	0.9	16
14	Plasma Circulating Extracellular RNAs in Left Ventricular Remodeling Post-Myocardial Infarction. EBioMedicine, 2018, 32, 172-181.	2.7	52
15	Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nature Biotechnology, 2018, 36, 746-757.	9.4	134
16	Micro RNAs from DNA Viruses are Found Widely in Plasma in a Large Observational Human Population. Scientific Reports, 2018, 8, 6397.	1.6	6
17	Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biology, 2017, 18, 16.	3.8	151
18	Extracellular RNAs Are Associated With Insulin Resistance and Metabolic Phenotypes. Diabetes Care, 2017, 40, 546-553.	4.3	73

#	Article	IF	CITATIONS
19	Crossâ€sectional relations of wholeâ€blood mi <scp>RNA</scp> expression levels and hand grip strength in a community sample. Aging Cell, 2017, 16, 888-894.	3.0	13
20	Stroke and Circulating Extracellular RNAs. Stroke, 2017, 48, 828-834.	1.0	35
21	MicroRNA Signature of Cigarette Smoking and Evidence for a Putative Causal Role of MicroRNAs in Smoking-Related Inflammation and Target Organ Damage. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	45
22	Small RNA-seq during acute maximal exercise reveal RNAs involved in vascular inflammation and cardiometabolic health: brief report. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1162-H1167.	1.5	34
23	Messenger RNA and MicroRNA transcriptomic signatures of cardiometabolic risk factors. BMC Genomics, 2017, 18, 139.	1.2	33
24	The role of RNA uptake in platelet heterogeneity. Thrombosis and Haemostasis, 2017, 117, 948-961.	1.8	68
25	Plasma MicroRNAs Relate to Atrial Fibrillation Recurrence after Catheter Ablation: Longitudinal Findings from the MiRhythm Study. Journal of Clinical & Experimental Cardiology, 2017, 08, .	0.0	5
26	Discordant Expression of Circulating microRNA from Cellular and Extracellular Sources. PLoS ONE, 2016, 11, e0153691.	1.1	30
27	Circulating MicroRNAs as Potential Biomarkers for Traumatic Brain Injury-Induced Hypopituitarism. Journal of Neurotrauma, 2016, 33, 1818-1825.	1.7	32
28	Diverse human extracellular RNAs are widely detected in human plasma. Nature Communications, 2016, 7, 11106.	5.8	170
29	Platelet functional and transcriptional changes induced by intralipid infusion. Thrombosis and Haemostasis, 2016, 115, 1147-1156.	1.8	6
30	Micro-RNA (miRNA) profile in Hodgkin lymphoma: association between clinical and pathological variables. Medical Oncology, 2016, 33, 34.	1.2	60
31	Comparison of RNA isolation and associated methods for extracellular RNA detection by high-throughput quantitative polymerase chain reaction. Analytical Biochemistry, 2016, 501, 66-74.	1.1	17
32	Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 26533.	5 . 5	51
33	Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans. PLoS ONE, 2015, 10, e0131688.	1.1	8
34	Dissecting the Roles of MicroRNAs in Coronary Heart Disease via Integrative Genomic Analyses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1011-1021.	1.1	53
35	Sex Differences in Platelet Toll-Like Receptors and Their Association With Cardiovascular Risk Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1030-1037.	1.1	91
36	Genome-wide identification of microRNA expression quantitative trait loci. Nature Communications, 2015, 6, 6601.	5.8	134

#	Article	IF	CITATIONS
37	Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the) Tj ${\sf ETQq1}$	1 0.784314 rgBT	/Qyerlock I
38	Genetic associations with expression for genes implicated in GWAS studies for atherosclerotic cardiovascular disease and blood phenotypes. Human Molecular Genetics, 2014, 23, 782-795.	1.4	49
39	Relations between circulating microRNAs and atrial fibrillation: Data from the Framingham Offspring Study. Heart Rhythm, 2014, 11, 663-669.	0.3	80
40	Interleukin 1 Receptor 1 and Interleukin $1\hat{l}^2$ Regulate Megakaryocyte Maturation, Platelet Activation, and Transcript Profile During Inflammation in Mice and Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 552-564.	1.1	136
41	Relationship Among Circulating Inflammatory Proteins, Platelet Gene Expression, and Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2666-2673.	1.1	56
42	Gene Expression Signatures of Coronary Heart Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1418-1426.	1,1	105
43	Circulating Cell and Plasma microRNA Profiles Differ between Non-STSegment and ST-Segment-Elevation Myocardial Infarction. Family Medicine & Medical Science Research, 2013, 02, 108.	0.1	58
44	The distribution of circulating microRNA and their relation to coronary disease. F1000Research, 2012, 1, 50.	0.8	40
45	Reduced Adipose Tissue Inflammation Represents an Intermediate Cardiometabolic Phenotype in Obesity. Journal of the American College of Cardiology, 2011, 58, 232-237.	1.2	76
46	Regulatory effects of TLR2 on megakaryocytic cell function. Blood, 2011, 117, 5963-5974.	0.6	91
47	Relation of Platelet and Leukocyte Inflammatory Transcripts to Body Mass Index in the Framingham Heart Study. Circulation, 2010, 122, 119-129.	1.6	121
48	The role of the blood transcriptome in innate inflammation and stroke. Annals of the New York Academy of Sciences, 2010, 1207, 41-45.	1.8	12
49	Stimulation of Toll-Like Receptor 2 in Human Platelets Induces a Thromboinflammatory Response Through Activation of Phosphoinositide 3-Kinase. Circulation Research, 2009, 104, 346-354.	2.0	231
50	PRAME mRNA levels in cases with chronic leukemia: Clinical importance and review of the literature. Leukemia Research, 2007, 31, 365-369.	0.4	30
51	PRAME mRNA levels in cases with acute leukemia: Clinical importance and future prospects. American Journal of Hematology, 2005, 79, 257-261.	2.0	66