Urs Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1073913/publications.pdf

Version: 2024-02-01

124	12,308	60 h-index	106
papers	citations		g-index
127	127	127	10264
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Time of Prenatal Immune Challenge Determines the Specificity of Inflammation-Mediated Brain and Behavioral Pathology. Journal of Neuroscience, 2006, 26, 4752-4762.	3.6	729
2	Prenatal Poly(I:C) Exposure and Other Developmental Immune Activation Models in Rodent Systems. Biological Psychiatry, 2014, 75, 307-315.	1.3	514
3	Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neuroscience and Biobehavioral Reviews, 2005, 29, 913-947.	6.1	438
4	Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain, Behavior, and Immunity, 2008, 22, 469-486.	4.1	413
5	Stress in Puberty Unmasks Latent Neuropathological Consequences of Prenatal Immune Activation in Mice. Science, 2013, 339, 1095-1099.	12.6	404
6	Epidemiology-driven neurodevelopmental animal models of schizophrenia. Progress in Neurobiology, 2010, 90, 285-326.	5.7	326
7	Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. Journal of Neuroinflammation, 2012, 9, 151.	7.2	314
8	In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neuroscience and Biobehavioral Reviews, 2009, 33, 1061-1079.	6.1	312
9	Schizophrenia and Autism: Both Shared and Disorder-Specific Pathogenesis Via Perinatal Inflammation?. Pediatric Research, 2011, 69, 26R-33R.	2.3	305
10	Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry, 2017, 22, 936-943.	7.9	280
11	A Review of the Fetal Brain Cytokine Imbalance Hypothesis of Schizophrenia. Schizophrenia Bulletin, 2009, 35, 959-972.	4.3	273
12	Developmental neuroinflammation and schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 42, 20-34.	4.8	258
13	Immunological stress at the maternal–foetal interface: A link between neurodevelopment and adult psychopathology. Brain, Behavior, and Immunity, 2006, 20, 378-388.	4.1	254
14	The Neurodevelopmental Impact of Prenatal Infections at Different Times of Pregnancy: The Earlier the Worse?. Neuroscientist, 2007, 13, 241-256.	3.5	234
15	Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Molecular Psychiatry, 2008, 13, 208-221.	7.9	227
16	Inflammatory processes in schizophrenia: A promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond., 2011, 132, 96-110.		217
17	To poly(I:C) or not to poly(I:C): Advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology, 2012, 62, 1308-1321.	4.1	213
18	Late Prenatal Immune Activation in Mice Leads to Behavioral and Neurochemical Abnormalities Relevant to the Negative Symptoms of Schizophrenia. Neuropsychopharmacology, 2010, 35, 2462-2478.	5 . 4	210

#	Article	IF	CITATIONS
19	Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. International Journal of Neuropsychopharmacology, 2009, 12, 513.	2.1	209
20	Relative Prenatal and Postnatal Maternal Contributions to Schizophrenia-Related Neurochemical Dysfunction after In Utero Immune Challenge. Neuropsychopharmacology, 2008, 33, 441-456.	5.4	205
21	A Longitudinal Examination of the Neurodevelopmental Impact of Prenatal Immune Activation in Mice Reveals Primary Defects in Dopaminergic Development Relevant to Schizophrenia. Journal of Neuroscience, 2010, 30, 1270-1287.	3.6	197
22	Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. American Journal of Psychiatry, 2018, 175, 1073-1083.	7.2	195
23	Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology, 2019, 44, 245-258.	5.4	180
24	Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia. Molecular Psychiatry, 2018, 23, 323-334.	7.9	159
25	Critical review of the safety assessment of titanium dioxide additives in food. Journal of Nanobiotechnology, 2018, 16, 51.	9.1	158
26	Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behavioural Brain Research, 2009, 204, 322-334.	2.2	141
27	Neurodevelopmental Resilience and Susceptibility to Maternal Immune Activation. Trends in Neurosciences, 2019, 42, 793-806.	8.6	134
28	Transgenerational transmission and modification of pathological traits induced by prenatal immune activation. Molecular Psychiatry, 2017, 22, 102-112.	7.9	131
29	Prenatal Immune Challenge Is an Environmental Risk Factor for Brain and Behavior Change Relevant to Schizophrenia: Evidence from MRI in a Mouse Model. PLoS ONE, 2009, 4, e6354.	2.5	128
30	Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 42, 1-4.	4.8	128
31	Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: Implications for schizophrenia. Neuroscience, 2006, 143, 51-62.	2.3	127
32	Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience, 2008, 154, 701-709.	2.3	124
33	Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain, Behavior, and Immunity, 2016, 55, 25-38.	4.1	124
34	Prenatal and postnatal maternal contributions in the infection model of schizophrenia. Experimental Brain Research, 2006, 173, 243-257.	1.5	122
35	Genome-wide DNA Methylation Changes in a Mouse Model of Infection-Mediated Neurodevelopmental Disorders. Biological Psychiatry, 2017, 81, 265-276.	1.3	120
36	Gut Vagal Afferents Differentially Modulate Innate Anxiety and Learned Fear. Journal of Neuroscience, 2014, 34, 7067-7076.	3.6	118

#	Article	IF	Citations
37	Prenatal Immune Activation Induces Maturation-Dependent Alterations in the Prefrontal GABAergic Transcriptome. Schizophrenia Bulletin, 2014, 40, 351-361.	4.3	117
38	Prenatal Immune Activation Interacts with Genetic < i>Nurr1 < /i> Deficiency in the Development of Attentional Impairments. Journal of Neuroscience, 2012, 32, 436-451.	3.6	115
39	Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Molecular Psychiatry, 2018, 23, 36-47.	7.9	112
40	Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Translational Psychiatry, 2016, 6, e772-e772.	4.8	111
41	Evaluating Early Preventive Antipsychotic and Antidepressant Drug Treatment in an Infection-Based Neurodevelopmental Mouse Model of Schizophrenia. Schizophrenia Bulletin, 2010, 36, 607-623.	4.3	107
42	Maternal immune activation induces <i>GAD1</i> and <i>GAD2</i> promoter remodeling in the offspring prefrontal cortex. Epigenetics, 2015, 10, 1143-1155.	2.7	102
43	Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging. Journal of Neuroinflammation, 2015, 12, 221.	7.2	100
44	Prenatal exposure to infection: a primary mechanism for abnormal dopaminergic development in schizophrenia. Psychopharmacology, 2009, 206, 587-602.	3.1	95
45	Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: association with depressive symptoms. Molecular Psychiatry, 2017, 22, 1448-1454.	7.9	93
46	Influence of poly(I:C) variability on thermoregulation, immune responses and pregnancy outcomes in mouse models of maternal immune activation. Brain, Behavior, and Immunity, 2019, 80, 406-418.	4.1	93
47	Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability. Biological Psychiatry, 2021, 89, 215-226.	1.3	89
48	Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Molecular Autism, 2017, 8, 9.	4.9	88
49	The international society for developmental psychobiology annual meeting symposium: Impact of early life experiences on brain and behavioral development. Developmental Psychobiology, 2006, 48, 583-602.	1.6	87
50	Age-related accumulation of Reelin in amyloid-like deposits. Neurobiology of Aging, 2009, 30, 697-716.	3.1	85
51	Chronic clozapine treatment improves prenatal infection-induced working memory deficits without influencing adult hippocampal neurogenesis. Psychopharmacology, 2010, 208, 531-543.	3.1	85
52	Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models. Translational Psychiatry, 2012, 2, e81-e81.	4.8	80
53	Behavioral, neuroanatomical, and molecular correlates of resilience and susceptibility to maternal immune activation. Molecular Psychiatry, 2021, 26, 396-410.	7.9	80
54	Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Molecular Psychiatry, 2021, 26, 849-863.	7.9	77

#	Article	IF	CITATIONS
55	Mouse models of maternal immune activation: Mind your caging system!. Brain, Behavior, and Immunity, 2018, 73, 643-660.	4.1	76
56	Prenatal versus postnatal maternal factors in the development of infection-induced working memory impairments in mice. Brain, Behavior, and Immunity, 2013, 33, 190-200.	4.1	75
57	Enzymatic Dissociation Induces Transcriptional and Proteotype Bias in Brain Cell Populations. International Journal of Molecular Sciences, 2020, 21, 7944.	4.1	72
58	Amylin at the interface between metabolic and neurodegenerative disorders. Frontiers in Neuroscience, 2015, 9, 216.	2.8	71
59	Neuronal activity increases translocator protein (TSPO) levels. Molecular Psychiatry, 2021, 26, 2025-2037.	7.9	70
60	Single and combined effects of prenatal immune activation and peripubertal stress on parvalbumin and reelin expression in the hippocampal formation. Brain, Behavior, and Immunity, 2014, 40, 48-54.	4.1	68
61	Long-term pathological consequences of prenatal infection: beyond brain disorders. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1-R12.	1.8	68
62	DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond. International Journal of Molecular Sciences, 2016, 17, 856.	4.1	66
63	Joint Effects of Exposure to Prenatal Infection and Peripubertal Psychological Trauma in Schizophrenia. Schizophrenia Bulletin, 2017, 43, 171-179.	4.3	65
64	Anti-inflammatory signaling in schizophrenia. Brain, Behavior, and Immunity, 2011, 25, 1507-1518.	4.1	62
65	The Roots of Autism and ADHD Twin Study in Sweden (RATSS). Twin Research and Human Genetics, 2014, 17, 164-176.	0.6	62
66	Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency. Molecular Psychiatry, 2017, 22, 961-971.	7.9	58
67	Perinatal programming by inflammation. Brain, Behavior, and Immunity, 2017, 63, 1-7.	4.1	52
68	Deficient maternal care resulting from immunological stress during pregnancy is associated with a sex-dependent enhancement of conditioned fear in the offspring. Journal of Neurodevelopmental Disorders, 2009, 1, 15-32.	3.1	51
69	Cognitive impairment following prenatal immune challenge in mice correlates with prefrontal cortical AKT1 deficiency. International Journal of Neuropsychopharmacology, 2010, 13, 981-996.	2.1	51
70	Priming of Metabolic Dysfunctions by Prenatal Immune Activation in Mice: Relevance to Schizophrenia. Schizophrenia Bulletin, 2013, 39, 319-329.	4.3	50
71	Genome-Wide Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal Immune Activation Model of Neurodevelopmental Disorders. Cerebral Cortex, 2017, 27, 3397-3413.	2.9	50
72	Maternal Vitamin D Prevents Abnormal Dopaminergic Development and Function in a Mouse Model of Prenatal Immune Activation. Scientific Reports, 2018, 8, 9741.	3.3	45

#	Article	IF	Citations
73	PYY3–36: Beyond food intake. Frontiers in Neuroendocrinology, 2015, 38, 1-11.	5.2	40
74	Adolescence is a sensitive period for prefrontal microglia to act on cognitive development. Science Advances, 2022, 8, eabi6672.	10.3	40
75	Prenatal exposure to TiO2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Translational Psychiatry, 2018, 8, 193.	4.8	39
76	Schizophrenia-relevant behaviors in a genetic mouse model of constitutive Nurr1 deficiency. Genes, Brain and Behavior, 2011, 10, 589-603.	2.2	38
77	Chronic high fat diet consumption impairs sensorimotor gating in mice. Psychoneuroendocrinology, 2013, 38, 2562-2574.	2.7	38
78	Altered GSK3 \hat{l}^2 signaling in an infection-based mouse model of developmental neuropsychiatric disease. Neuropharmacology, 2013, 73, 56-65.	4.1	33
79	Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice. Frontiers in Behavioral Neuroscience, 2015, 9, 343.	2.0	32
80	Behavioral Effects of the Benzodiazepine-Positive Allosteric Modulator SH-053-2'F-S-CH3 in an Immune-Mediated Neurodevelopmental Disruption Model. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	31
81	Individual and combined effects of maternal anemia and prenatal infection on risk for schizophrenia in offspring. Schizophrenia Research, 2016, 172, 35-40.	2.0	30
82	Expression of the CS- and US-Pre-Exposure Effects in the Conditioned Taste Aversion Paradigm and Their Abolition Following Systemic Amphetamine Treatment in C57BL6/J Mice. Neuropsychopharmacology, 2004, 29, 2140-2148.	5.4	29
83	Behavioral Animal Models of Antipsychotic Drug Actions. Handbook of Experimental Pharmacology, 2012, , 361-406.	1.8	29
84	Administration of the Y2 Receptor Agonist PYY3-36 in Mice Induces Multiple Behavioral Changes Relevant to Schizophrenia. Neuropsychopharmacology, 2013, 38, 2446-2455.	5.4	29
85	Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Current Opinion in Behavioral Sciences, 2019, 28, 119-128.	3.9	29
86	Abdominal Vagal Afferents Modulate the Brain Transcriptome and Behaviors Relevant to Schizophrenia. Journal of Neuroscience, 2018, 38, 1634-1647.	3.6	28
87	Transgenerational modification of dopaminergic dysfunctions induced by maternal immune activation. Neuropsychopharmacology, 2021, 46, 404-412.	5.4	28
88	Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systemic amphetamine in C57BL/6 mice. Psychopharmacology, 2007, 191, 211-221.	3.1	25
89	Frontal-Subcortical Protein Expression following Prenatal Exposure to Maternal Inflammation. PLoS ONE, 2011, 6, e16638.	2.5	25
90	Preclinical validation of the micropipette-guided drug administration (MDA) method in the maternal immune activation model of neurodevelopmental disorders. Brain, Behavior, and Immunity, 2020, 88, 461-470.	4.1	25

#	Article	IF	CITATIONS
91	Microglia and schizophrenia: where next?. Molecular Psychiatry, 2017, 22, 788-789.	7.9	21
92	Identification of inflammatory subgroups of schizophrenia and bipolar disorder patients with HERV-W ENV antigenemia by unsupervised cluster analysis. Translational Psychiatry, 2021, 11, 377.	4.8	21
93	The neuropathological contribution of prenatal inflammation to schizophrenia. Expert Review of Neurotherapeutics, 2011, 11, 29-32.	2.8	20
94	Abnormal context–reward associations in an immune-mediated neurodevelopmental mouse model with relevance to schizophrenia. Translational Psychiatry, 2015, 5, e637-e637.	4.8	20
95	Nurr1 is not essential for the development of prepulse inhibition deficits induced by prenatal immune activation. Brain, Behavior, and Immunity, 2011, 25, 1316-1321.	4.1	19
96	The Y2 receptor agonist PYY3–36 increases the behavioural response to novelty and acute dopaminergic drug challenge in mice. International Journal of Neuropsychopharmacology, 2014, 17, 407-419.	2.1	19
97	Neonatal Levels of Inflammatory Markers and Later Risk of Schizophrenia. Biological Psychiatry, 2015, 77, 548-555.	1.3	19
98	Cognitive effects of subdiaphragmatic vagal deafferentation in rats. Neurobiology of Learning and Memory, 2017, 142, 190-199.	1.9	19
99	Relationship between sensorimotor gating deficits and dopaminergic neuroanatomy in Nurr1-deficient mice. Experimental Neurology, 2011, 232, 22-32.	4.1	16
100	Comparison of the long-term consequences of withdrawal from repeated amphetamine exposure in adolescence and adulthood on information processing and locomotor sensitization in mice. European Neuropsychopharmacology, 2013, 23, 160-170.	0.7	15
101	Effects of selective estrogen receptor alpha and beta modulators on prepulse inhibition in male mice. Psychopharmacology, 2015, 232, 2981-2994.	3.1	14
102	Abdominal vagal deafferentation alters affective behaviors in rats. Journal of Affective Disorders, 2019, 252, 404-412.	4.1	13
103	Oral application of clozapine-N-oxide using the micropipette-guided drug administration (MDA) method in mouse DREADD systems. Lab Animal, 2021, 50, 69-75.	0.4	12
104	Effects of withdrawal from repeated amphetamine exposure in peri-puberty on neuroplasticity-related genes in mice. Neuroscience, 2013, 250, 222-231.	2.3	10
105	Response to Comment on "Stress in Puberty Unmasks Latent Neuropathological Consequences of Prenatal Immune Activation in Mice". Science, 2013, 340, 811-811.	12.6	8
106	Interactive effects between hemizygous 15q13.3 microdeletion and peripubertal stress on adult behavioral functions. Neuropsychopharmacology, 2019, 44, 703-710.	5.4	8
107	New Serological Evidence Points Toward an Infectious Route to Bipolar Disorder. American Journal of Psychiatry, 2014, 171, 485-488.	7.2	7
108	Oleoylethanolamide-induced anorexia in rats is associated with locomotor impairment. Physiological Reports, 2018, 6, e13517.	1.7	7

#	Article	IF	CITATIONS
109	Dependency of prepulse inhibition deficits on baseline startle reactivity in a mouse model of the human 22q11.2 microdeletion syndrome. Genes, Brain and Behavior, 2019, 18, e12523.	2.2	7
110	Symptomatic and preventive effects of the novel phosphodiesterase-9 inhibitor BI 409306 in an immune-mediated model of neurodevelopmental disorders. Neuropsychopharmacology, 2021, 46, 1526-1534.	5.4	6
111	Developmental Immune Activation Models with Relevance to Schizophrenia. Current Topics in Neurotoxicity, 2015, , 15-32.	0.4	2
112	Comment on: "The serological evidence for maternal influenza as risk factor for psychosis in offspring is insufficient: Critical review and meta-analysis― Schizophrenia Research, 2017, 189, 223-224.	2.0	2
113	Letter to the Editor re: Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration. Molecular Imaging and Biology, 2018, 20, 352-353.	2.6	1
114	F21. THE PHOSPHODIESTERASE-9 INHIBITOR BI 409306 ATTENUATES SOCIAL INTERACTION AND DOPAMINERGIC DEFICITS IN ADULT OFFSPRING OF POLY(I:C)-BASED MATERNAL IMMUNE ACTIVATION NEURODEVELOPMENTAL MOUSE MODEL. Schizophrenia Bulletin, 2019, 45, S262-S262.	4.3	1
115	Maternal Immune Activation and Retrotransposition in Neurodevelopmental Disorders. Biological Psychiatry, 2021, 89, 842-844.	1.3	1
116	Double trouble: Prenatal immune activation in stress sensitive offspring. Brain, Behavior, and Immunity, 2022, 99, 3-8.	4.1	1
117	Rodent Models of Multiple Environmental Exposures with Relevance to Schizophrenia. Handbook of Behavioral Neuroscience, 2016, 23, 361-371.	0.7	1
118	Late prenatal immune activation in mice induces transgenerational effects via the maternal and paternal lineages. Cerebral Cortex, 2023, 33, 2273-2286.	2.9	1
119	15 Prenatal infections and long-term mental outcome: Modeling schizophrenia-related dysfunctions using the prenatal Polyl:C model in mice. , 2011, , 171-198.		0
120	F39. MATERNAL IMMUNE ACTIVATION MODELS: MIND YOUR CAGING SYSTEMS!. Schizophrenia Bulletin, 2018, 44, S234-S234.	4.3	0
121	F191. Maternal Immune Activation Models: Mind Your Caging Systems!. Biological Psychiatry, 2018, 83, S313.	1.3	O
122	239. Prenatal Immune Activation Modifies Behavioral Phenotypes Across Multiple Generations. Biological Psychiatry, 2018, 83, S96.	1.3	0
123	T178. MICROPIPETTE-GUIDED DRUG ADMINISTRATION (MDA) METHOD AS A NOVEL PHARMACOLOGICAL TREATMENT METHOD IN MICE: PRECLINICAL VALIDATION USING RISPERIDONE IN THE MATERNAL IMMUNE ACTIVATION MODEL OF NEURODEVELOPMENTAL DISORDERS. Schizophrenia Bulletin, 2020, 46, S299-S299.	4.3	0
124	M180. SUSCEPTIBILITY AND RESILIENCE IN A MOUSE MODEL OF MATERNAL IMMUNE ACTIVATION. Schizophrenia Bulletin, 2020, 46, S204-S205.	4.3	0