Angel Rubio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10738141/publications.pdf

Version: 2024-02-01

407 papers 37,234 citations

95 h-index 180 g-index

413 all docs

413 docs citations

413 times ranked

24808 citing authors

#	Article	IF	CITATIONS
1	Electronic excitations: density-functional versus many-body Green's-function approaches. Reviews of Modern Physics, 2002, 74, 601-659.	45.6	3,375
2	Theory of graphitic boron nitride nanotubes. Physical Review B, 1994, 49, 5081-5084.	3.2	1,564
3	High-pressure phases of group-IV, Ill–V, and Il–VI compounds. Reviews of Modern Physics, 2003, 75, 863-912.	45.6	922
4	Ab initiostructural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 1999, 59, 12678-12688.	3.2	854
5	octopus: a tool for the application of time-dependent density functional theory. Physica Status Solidi (B): Basic Research, 2006, 243, 2465-2488.	1.5	756
6	octopus: a first-principles tool for excited electron–ion dynamics. Computer Physics Communications, 2003, 151, 60-78.	7.5	671
7	Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 2019, 572, 95-100.	27.8	644
8	Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Physical Review B, 1995, 51, 6868-6875.	3.2	583
9	Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Materials, 2020, 19, 861-866.	27.5	544
10	Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions. Science, 2013, 340, 1434-1437.	12.6	513
11	Propagators for the time-dependent Kohn–Sham equations. Journal of Chemical Physics, 2004, 121, 3425-3433.	3.0	477
12	Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane. Physical Review B, 2011, 84, .	3.2	476
13	Coherent ultrafast charge transfer in an organic photovoltaic blend. Science, 2014, 344, 1001-1005.	12.6	470
14	Synthesis ofBxCyNznanotubules. Physical Review B, 1995, 51, 11229-11232.	3.2	413
15	Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3026-3034.	7.1	389
16	Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Physical Chemistry Chemical Physics, 2015, 17, 31371-31396.	2.8	376
17	Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon, 2002, 40, 1729-1734.	10.3	373
18	Exact Coulomb cutoff technique for supercell calculations. Physical Review B, 2006, 73, .	3.2	369

#	Article	IF	Citations
19	Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Physical Review B, 1994, 50, 10780-10787.	3.2	366
20	Chiral tubules of hexagonalBC2N. Physical Review B, 1994, 50, 4976-4979.	3.2	343
21	Excitons in Boron Nitride Nanotubes: Dimensionality Effects. Physical Review Letters, 2006, 96, 126104.	7.8	343
22	Confined linear carbon chains as a route to bulkÂcarbyne. Nature Materials, 2016, 15, 634-639.	27.5	341
23	Quasiparticle band structure of AlN and GaN. Physical Review B, 1993, 48, 11810-11816.	3.2	328
24	Real-space, real-time method for the dielectric function. Physical Review B, 2000, 62, 7998-8002.	3.2	326
25	Moiré heterostructures as a condensed-matter quantum simulator. Nature Physics, 2021, 17, 155-163.	16.7	317
26	The phonon dispersion of graphite revisited. Solid State Communications, 2004, 131, 141-152.	1.9	314
27	Asymptotics of the Dispersion Interaction: Analytic Benchmarks for van der Waals Energy Functionals. Physical Review Letters, 2006, 96, 073201.	7.8	314
28	Excitonic Effects in Solids Described by Time-Dependent Density-Functional Theory. Physical Review Letters, 2002, 88, 066404.	7.8	282
29	In SituBand Gap Engineering of Carbon Nanotubes. Physical Review Letters, 1997, 79, 2093-2096.	7.8	273
30	New boron based nanostructured materials. Journal of Chemical Physics, 1999, 110, 3176-3185.	3.0	257
31	Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nature Communications, 2017, 8, 13940.	12.8	255
32	The physical and chemical properties of heteronanotubes. Reviews of Modern Physics, 2010, 82, 1843-1885.	45.6	239
33	Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nature Communications, 2013, 4, 1602.	12.8	239
34	Electronic properties of tubule forms of hexagonalBC3. Physical Review B, 1994, 50, 18360-18366.	3.2	236
35	Self-energy and excitonic effects in the electronic and optical properties of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>TiO </mml:mtext> </mml:mrow> <mml:mrow> <mml:mn: 2010.="" 82<="" b.="" phases.="" physical="" review="" td=""><td>>2</td><td>nn 236 nml:ms</td></mml:mn:></mml:mrow></mml:msub></mml:mrow></mml:math>	>2	nn 236 nml:ms
36	Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids. Physical Review Letters, 2017, 118, 087403.	7.8	226

#	Article	IF	CITATIONS
37	Artificially Stacked Atomic Layers: Toward New van der Waals Solids. Nano Letters, 2012, 12, 3518-3525.	9.1	211
38	Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. Journal of Chemical Physics, 2020, 152, 124119.	3.0	210
39	van der Waals interaction in nanotube bundles: Consequences on vibrational modes. Physical Review B, 1999, 60, R8521-R8524.	3.2	206
40	$Conserving < mml: math xmlns: mml = "http://www.w3.org/1998/Math/MathML" \\ display = "inline" > < mml: mrow > < mml: mi > G < / mml: mi > W < / mml: mi > < / mml: mrow > < / mml: math > scheme \\ for nonequilibrium quantum transport in molecular contacts. Physical Review B, 2008, 77, .$	3.2	204
41	Instantaneous Band Gap Collapse in Photoexcited Monoclinic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>VO</mml:mi></mml:mrow><mml:mrow><mml 113,="" 2014,="" 216401.<="" doping,="" letters,="" photocarrier="" physical="" review="" td="" to=""><td>.7.8 :mn>2<td>າກໄ:mn></td></td></mml></mml:mrow></mml:msub></mml:mrow></mml:math>	.7.8 :mn>2 <td>າກໄ:mn></td>	າກໄ:mn>
42	Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory. Physical Review A, 2014, 90, .	2.5	197
43	Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures. Physical Review B, 2000, 62, 16612-16623.	3.2	196
44	Ab InitioPhotoabsorption Spectra and Structures of Small Semiconductor and Metal Clusters. Physical Review Letters, 1996, 77, 247-250.	7.8	193
45	Ab initio calculations of the pressure-induced structural phase transitionsfor four II-VI compounds. Physical Review B, 1997, 55, 13025-13031.	3.2	191
46	Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory. Physical Review B, 2004, 69, .	3.2	184
47	Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics, 2009, 25, 3158-3165.	4.1	184
48	First-Principles Description of Correlation Effects in Layered Materials. Physical Review Letters, 2006, 96, 136404.	7.8	183
49	From a quantum-electrodynamical light $\hat{a}\in\hat{a}$ matter description to novel spectroscopies. Nature Reviews Chemistry, 2018, 2, .	30.2	182
50	Time-Dependent Density-Functional Approach for Biological Chromophores: The Case of the Green Fluorescent Protein. Physical Review Letters, 2003, 90, 258101.	7.8	181
51	Time-dependent density-functional theory in massively parallel computer architectures: the octopus project. Journal of Physics Condensed Matter, 2012, 24, 233202.	1.8	181
52	Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Graphane. Physical Review Letters, 2010, 104, 226804.	7.8	180
53	Ab initiostudy of the optical absorption and wave-vector-dependent dielectric response of graphite. Physical Review B, 2004, 69, .	3.2	175
54	Optical and Loss Spectra of Carbon Nanotubes: Depolarization Effects and Intertube Interactions. Physical Review Letters, 2003, 91, 046402.	7.8	174

#	Article	IF	Citations
55	Electronic States in a Finite Carbon Nanotube: A One-Dimensional Quantum Box. Physical Review Letters, 1999, 82, 3520-3523.	7.8	173
56	Assessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theory. Journal of Chemical Physics, 2001, 115, 3006-3014.	3.0	172
57	Mechanical and electronic properties of carbon and boron–nitride nanotubes. Carbon, 2000, 38, 1681-1690.	10.3	171
58	Density functionals from many-body perturbation theory: The band gap for semiconductors and insulators. Journal of Chemical Physics, 2006, 124, 154108.	3.0	166
59	Ab initiocalculations of the lattice dynamics of boron nitride nanotubes. Physical Review B, 2003, 68, .	3.2	165
60	Ionic Cohesion and Electron Doping of Thin Carbon Tubules with Alkali Atoms. Physical Review Letters, 1995, 74, 2993-2996.	7.8	163
61	Polariton panorama. Nanophotonics, 2020, 10, 549-577.	6.0	155
62	Functional proteomics of nonalcoholic steatohepatitis: Mitochondrial proteins as targets of <i>S</i> -adenosylmethionine. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3065-3070.	7.1	154
63	Benchmark of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi><mml:mi>W</mml:mi></mml:mrow> </mml:math> methods for azabenzenes. Physical Review B, 2012, 86, .	3.2	154
64	Bound Excitons in Time-Dependent Density-Functional Theory: Optical and Energy-Loss Spectra. Physical Review Letters, 2003, 91, 256402.	7.8	151
65	Electrical transport in carbon nanotubes: Role of disorder and helical symmetries. Physical Review B, 2004, 69, .	3.2	149
66	Prediction of Dispersion Forces: Is There a Problem?. Australian Journal of Chemistry, 2001, 54, 513.	0.9	148
67	<i>Ab initio</i> nanoplasmonics: The impact of atomic structure. Physical Review B, 2014, 90, .	3.2	147
68	Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics. Nature Communications, 2017, 8, 745.	12.8	146
69	Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Physical Review B, 2012, 86, .	3.2	138
70	Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4883-4892.	7.1	138
71	Self-consistent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>o</mml:mi>o\w\w</mml:math> : All-electron implementation with localized basis functions. Physical Review B, 2013, 88, .	3.2	135
72	Spectroscopic characterization of Stone-Wales defects in nanotubes. Physical Review B, 2004, 69, .	3.2	134

#	Article	IF	Citations
73	Cavity Born–Oppenheimer Approximation for Correlated Electron–Nuclear-Photon Systems. Journal of Chemical Theory and Computation, 2017, 13, 1616-1625.	5.3	133
74	Light–matter interaction in the long-wavelength limit: no ground-state without dipole self-energy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 034005.	1.5	132
75	Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy. Nature Chemistry, 2016, 8, 678-683.	13.6	130
76	<i>Ab initio</i> nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling. Physical Review A, 2018, 98, .	2.5	126
77	Modified Ehrenfest Formalism for Efficient Large-Scale ab initio Molecular Dynamics. Journal of Chemical Theory and Computation, 2009, 5, 728-742.	5.3	124
78	Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor. Nano Letters, 2019, 19, 4934-4940.	9.1	123
79	Ultrafast electron-phonon decoupling in graphite. Physical Review B, 2008, 77, .	3.2	120
80	<i>Ab initio</i> electronic and optical spectra of free-base porphyrins: The role of electronic correlation. Journal of Chemical Physics, 2009, 131, 084102.	3.0	120
81	Engineering quantum materials with chiral optical cavities. Nature Materials, 2021, 20, 438-442.	27.5	120
82	Anisotropy and Interplane Interactions in the Dielectric Response of Graphite. Physical Review Letters, 2002, 89, 076402.	7.8	119
83	Ultrafast Modification of Hubbard <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>U</mml:mi></mml:mrow></mml:math> in a Strongly Correlated Material: <i>AbÂinitio</i> High-Harmonic Generation in NiO. Physical Review Letters, 2018, 121, 097402.	7.8	118
84	Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics, 2016, 5, 409-426.	6.0	116
85	A TDDFT Study of the Excited States of DNA Bases and Their Assemblies. Journal of Physical Chemistry B, 2006, 110, 7129-7138.	2.6	112
86	Conduction mechanisms and magnetotransport in multiwalled carbon nanotubes. Physical Review B, 2001, 64, .	3.2	111
87	Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15285-15290.	7.1	107
88	Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. Journal of Chemical Physics, 2007, 126, 184106.	3.0	106
89	Ab initio study of B32 clusters: competition between spherical, quasiplanar and tubular isomers. Chemical Physics Letters, 1999, 311, 21-28.	2.6	105
90	Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics. ACS Photonics, 2020, 7, 975-990.	6.6	105

#	Article	IF	Citations
91	Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors. Physical Review B, 1996, 53, 15638-15642.	3.2	103
92	Electronic structure and excitations in oligoacenes from ab initio calculations. Journal of Chemical Physics, 2006, 124, 134901.	3.0	103
93	Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures. Journal of Physical Chemistry C, 2013, 117, 8941-8949.	3.1	103
94	Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States. Physical Review X, 2020, 10, .	8.9	102
95	Nonequilibrium GW approach to quantum transport in nano-scale contacts. Journal of Chemical Physics, 2007, 126, 091101.	3.0	100
96	Excitons in molecular crystals from first-principles many-body perturbation theory: Picene versus pentacene. Physical Review B, 2012, 86, .	3.2	99
97	Atomic-like high-harmonic generation from two-dimensional materials. Science Advances, 2018, 4, eaao5207.	10.3	98
98	Quasiparticle excitations in GaAslâ^'x Nxand AlAslâ^'x Nxordered alloys. Physical Review B, 1995, 51, 4343-4346.	3.2	96
99	Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics, 2018, 5, 992-1005.	6.6	96
100	Theoretical study of one-dimensional chains of metal atoms in nanotubes. Physical Review B, 1996, 53, 4023-4026.	3.2	93
101	Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Physical Review Letters, 2015, 115, 093001.	7.8	93
102	Simulating Pump–Probe Photoelectron and Absorption Spectroscopy on the Attosecond Timescale with Timeâ€Dependent Density Functional Theory. ChemPhysChem, 2013, 14, 1363-1376.	2.1	87
103	Phonon-driven spin-Floquet magneto-valleytronics in MoS2. Nature Communications, 2018, 9, 638.	12.8	86
104	Bond Breaking and Bond Formation: How Electron Correlation is Captured in Many-Body Perturbation Theory and Density-Functional Theory. Physical Review Letters, 2013, 110, 146403.	7.8	82
105	New Middle Pleistocene hominin cranium from Gruta da Aroeira (Portugal). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3397-3402.	7.1	81
106	Intermolecular interactions in optical cavities: An <i>ab initio</i> QED study. Journal of Chemical Physics, 2021, 154, 094113.	3.0	81
107	Light–Matter Response in Nonrelativistic Quantum Electrodynamics. ACS Photonics, 2019, 6, 2757-2778.	6.6	79
108	Understanding Energy-Level Alignment in Donor–Acceptor/Metal Interfaces from Core-Level Shifts. ACS Nano, 2013, 7, 6914-6920.	14.6	78

#	Article	IF	Citations
109	Identification of Alternative Splicing Events Regulated by the Oncogenic Factor SRSF1 in Lung Cancer. Cancer Research, 2014, 74, 1105-1115.	0.9	77
110	Exciton dispersion in molecular solids. Journal of Physics Condensed Matter, 2015, 27, 113204.	1.8	74
111	Emergent elemental two-dimensional materials beyond graphene. Journal Physics D: Applied Physics, 2017, 50, 053004.	2.8	74
112	Nature of Symmetry Breaking at the Excitonic Insulator Transition: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Ta</mml:mi></mml:mrow><mml:mrow><mm 124,="" 197601.<="" 2020,="" letters,="" physical="" review="" td=""><td>l:m/n/82<td>nml:mn></td></td></mm></mml:mrow></mml:msub></mml:mrow></mml:math>	l:m/n/82 <td>nml:mn></td>	nml:mn>
113	Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Science Advances, $2021, 7, .$	10.3	73
114	Persistent currents in carbon nanotube based rings. Physical Review B, 2003, 67, .	3.2	72
115	Optical Absorption of the Blue Fluorescent Protein: A First-Principles Study. Journal of the American Chemical Society, 2005, 127, 12329-12337.	13.7	69
116	Mechanically Interlocked Singleâ€Wall Carbon Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 5394-5400.	13.8	69
117	Propagators for the Time-Dependent Kohn–Sham Equations: Multistep, Runge–Kutta, Exponential Runge–Kutta, and Commutator Free Magnus Methods. Journal of Chemical Theory and Computation, 2018, 14, 3040-3052.	5.3	69
118	Effect of spatial nonlocality on the density functional band gap. Physical Review B, 2006, 74, .	3.2	68
119	Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO ₂ (110). Journal of the American Chemical Society, 2013, 135, 11429-11432.	13.7	68
120	Many-Body Effects in the Excitation Spectrum of a Defect in SiC. Physical Review Letters, 2010, 105, 026401.	7.8	66
121	Strongly correlated electron–photon systems. Nature, 2022, 606, 41-48.	27.8	66
122	TDDFT from molecules to solids: The role of long-range interactions. International Journal of Quantum Chemistry, 2005, 102, 684-701.	2.0	65
123	Anderson Localization in Carbon Nanotubes: Defect Density and Temperature Effects. Physical Review Letters, 2005, 95, 266801.	7.8	65
124	Nanoscale patchworks. Nature Materials, 2010, 9, 379-380.	27.5	65
125	Role of nonlocal exchange in the electronic structure of correlated oxides. Physical Review B, 2012, 85, .	3.2	65
126	Cavity Control of Excitons in Two-Dimensional Materials. Nano Letters, 2019, 19, 3473-3479.	9.1	65

#	Article	IF	CITATIONS
127	Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local Modification of Chemical Properties. Journal of Physical Chemistry Letters, 2021, 12, 508-516.	4.6	65
128	Comment on "Huge Excitonic Effects in Layered Hexagonal Boron Nitride― Physical Review Letters, 2008, 100, 189701; discussion 189702.	7.8	64
129	Structure, electronic, and optical properties of TiO2 atomic clusters: An <i>ab initio</i> study. Journal of Chemical Physics, 2011, 135, 244704.	3.0	64
130	Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries. European Physical Journal B, 2015, 88, 1.	1.5	64
131	Monitoring Electron-Photon Dressing in WSe ₂ . Nano Letters, 2016, 16, 7993-7998.	9.1	64
132	Phonon Driven Floquet Matter. Nano Letters, 2018, 18, 1535-1542.	9.1	63
133	Anomalous Quasiparticle Lifetime in Graphite: Band Structure Effects. Physical Review Letters, 2001, 87, 246405.	7.8	62
134	Density-Functional Theory for <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi></mml:math> -Electron Systems: The <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi><mml:mi><mml:mtext mathvariant="normal">â°'</mml:mtext><mml:mi>γ</mml:mi></mml:mi></mml:math> Phase Transition in Cerium. Physical Review Letters, 2012, 109, 146402.	7.8	62
135	Sodium: A Charge-Transfer Insulator at High Pressures. Physical Review Letters, 2010, 104, 216404.	7.8	61
136	Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Physical Review Materials, 2017, 1, .	2.4	61
137	Quasiparticle Level Alignment for Photocatalytic Interfaces. Journal of Chemical Theory and Computation, 2014, 10, 2103-2113.	5 . 3	60
138	A largeâ€scale analysis of alternative splicing reveals a key role of QKI in lung cancer. Molecular Oncology, 2016, 10, 1437-1449.	4.6	60
139	Moir \tilde{A} © metrology of energy landscapes in van der Waals heterostructures. Nature Communications, 2021, 12, 242.	12.8	60
140	Stochastic Heterostructures and Diodium in B/N-Doped Carbon Nanotubes. Physical Review Letters, 2001, 87, 136402.	7.8	59
141	Silicite: The layered allotrope of silicon. Physical Review B, 2014, 90, .	3.2	59
142	Moir \tilde{A} © less correlations in ABCA graphene. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	59
143	C13NMR Chemical Shift of Single-Wall Carbon Nanotubes. Physical Review Letters, 2001, 86, 3160-3163.	7.8	58
144	Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Science Advances, 2020, 6, eaay2730.	10.3	57

#	Article	IF	CITATIONS
145	Polaritonic coupled-cluster theory. Physical Review Research, 2020, 2, .	3.6	57
146	Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Nature Communications, 2021, 12, 5644.	12.8	57
147	Higher-Order Band Topology in Twisted Moiré Superlattice. Physical Review Letters, 2021, 126, 066401.	7.8	56
148	Topological Floquet engineering of twisted bilayer graphene. Physical Review Research, 2019, 1, .	3.6	56
149	Can optical spectroscopy directly elucidate the ground state of C20?. Journal of Chemical Physics, 2002, 116, 1930-1933.	3.0	55
150	Unraveling the Intrinsic Color of Chlorophyll. Angewandte Chemie - International Edition, 2015, 54, 2170-2173.	13.8	55
151	Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory. Physical Review Letters, 1997, 78, 1428-1431.	7.8	54
152	Static correlation and electron localization in molecular dimers from the self-consistent RPA and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W<td>ni><<mark>/im</mark>ml:r</td><td>nrow></td></mml:mi></mml:mrow></mml:math>	ni>< <mark>/im</mark> ml:r	nrow>
153	High-harmonic generation from few-layer hexagonal boron nitride: Evolution from monolayer to bulk response. Physical Review B, 2018, 98, .	3.2	54
154	Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. Advances in Physics, 2019, 68, 225-333.	14.4	54
155	Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors. Briefings in Bioinformatics, 2019, 20, 1358-1375.	6.5	53
156	Charge-Transfer Plasmon Polaritons at Graphene/α-RuCl ₃ Interfaces. Nano Letters, 2020, 20, 8438-8445.	9.1	53
157	Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals. Nature Communications, 2020, 11, 1013.	12.8	53
158	Patching and Tearing Single-Wall Carbon-Nanotube Ropes into Multiwall Carbon Nanotubes. Physical Review Letters, 2002, 89, 255501.	7.8	52
159	Identification of a gene-pathway associated with non-alcoholic steatohepatitis. Journal of Hepatology, 2007, 46, 708-718.	3.7	52
160	Customized Electronic Coupling in Selfâ€Assembled Donor–Acceptor Nanostructures. Advanced Functional Materials, 2009, 19, 3567-3573.	14.9	52
161	Boron Quasicrystals and Boron Nanotubes: Ab Initio Study of Various B96 Isomers. Journal of Solid State Chemistry, 2000, 154, 269-274.	2.9	51
162	Moiré nematic phase in twisted double bilayer graphene. Nature Physics, 2022, 18, 196-202.	16.7	51

#	Article	IF	Citations
163	Calculated structural and electronic properties of CdSe under pressure. Physical Review B, 1995, 51, 4926-4930.	3.2	50
164	Comparing Quasiparticle H ₂ O Level Alignment on Anatase and Rutile TiO ₂ . ACS Catalysis, 2015, 5, 4242-4254.	11.2	50
165	Frenkel versus charge-transfer exciton dispersion in molecular crystals. Physical Review B, 2013, 88, .	3.2	49
166	A First-Principles Time-Dependent Density Functional Theory Framework for Spin and Time-Resolved Angular-Resolved Photoelectron Spectroscopy in Periodic Systems. Journal of Chemical Theory and Computation, 2017, 13, 265-273.	5.3	49
167	The ferroelectric photo ground state of SrTiO $\langle \text{sub} \rangle 3 \langle \text{sub} \rangle$: Cavity materials engineering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
168	Dielectric screening effects on the photoabsorption cross section of embedded metallic clusters. Physical Review B, 1993, 48, 18222-18229.	3.2	48
169	Electronic conduction in multi-walled carbon nanotubes: role of intershell coupling and incommensurability. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 285, 94-100.	2.1	48
170	High-harmonic generation from spin-polarised defects in solids. Npj Computational Materials, 2020, 6, .	8.7	48
171	Real-TimeAbÂlnitioSimulations of Excited Carrier Dynamics in Carbon Nanotubes. Physical Review Letters, 2006, 97, 126104.	7.8	47
172	Optical Saturation Driven by Exciton Confinement in Molecular Chains: A Time-Dependent Density-Functional Theory Approach. Physical Review Letters, 2008, 101, 133002.	7.8	47
173	Towards a gauge invariant method for molecular chiroptical properties in TDDFT. Physical Chemistry Chemical Physics, 2009, 11, 4481.	2.8	46
174	Basis set effects on the hyperpolarizability of CHCl3: Gaussian-type orbitals, numerical basis sets and real-space grids. Journal of Chemical Physics, 2010, 133, 034111.	3.0	46
175	Electronic properties of molecular solids: the peculiar case of solid picene. New Journal of Physics, 2010, 12, 103036.	2.9	46
176	Insights into colour-tuning of chlorophyll optical response in green plants. Physical Chemistry Chemical Physics, 2015, 17, 26599-26606.	2.8	46
177	Plasmon dispersion in layered transition-metal dichalcogenides. Physical Review B, 2012, 86, .	3.2	45
178	Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods. European Physical Journal B, 2012, 85, 1.	1.5	45
179	Photoinduced C–C Reactions on Insulators toward Photolithography of Graphene Nanoarchitectures. Journal of the American Chemical Society, 2014, 136, 4651-4658.	13.7	45
180	Polyyne electronic and vibrational properties under environmental interactions. Physical Review B, $2016, 94, .$	3.2	45

#	Article	IF	CITATIONS
181	Quasiparticle band structures of short-period superlattices and ordered alloys of AlN and GaN. Physical Review B, 1994, 49, 1952-1956.	3.2	44
182	First-principles description of charge transfer in donor-acceptor compounds from self-consistent many-body perturbation theory. Physical Review B, 2014, 90, .	3.2	44
183	Light-matter interactions via the exact factorization approach. European Physical Journal B, 2018, 91, 1.	1.5	44
184	Effect of many modes on self-polarization and photochemical suppression in cavities. Journal of Chemical Physics, 2020, 153, 104103.	3.0	44
185	Anomalous insulator-metal transition in boron nitride-graphene hybrid atomic layers. Physical Review B, 2012, 86, .	3.2	42
186	Parameter-free hybridlike functional based on an extended Hubbard model: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>DFT </mml:mi> <mml:mo>+ <td>nos₃a:mml:</td><td>mi2U</td></mml:mo></mml:mrow></mml:math>	nos₃a:mml:	m i2U
187	Making ab initio QED functional(s): Nonperturbative and photon-free effective frameworks for strong light–matter coupling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
188	Reversible bending of carbon nanotubes using a transmission electron microscope. Applied Physics Letters, 1998, 73, 1961-1963.	3.3	41
189	Conductance of Sidewall-Functionalized Carbon Nanotubes: Universal Dependence on Adsorption Sites. Physical Review Letters, 2008, 101, 236806.	7.8	41
190	Structural and Optoelectronic Properties of Unsaturated ZnO and ZnS Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 8741-8746.	3.1	41
191	The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions. Physical Chemistry Chemical Physics, 2015, 17, 25793-25798.	2.8	41
192	Survival of Floquet–Bloch States in the Presence of Scattering. Nano Letters, 2021, 21, 5028-5035.	9.1	41
193	Raman spectra of BN nanotubes:Ab initioand bond-polarizability model calculations. Physical Review B, 2005, 71, .	3.2	40
194	A perspective on <i>ab initio</i> modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity. Journal of Chemical Physics, 2022, 156, .	3.0	39
195	Selection of human tissue-specific elementary flux modes using gene expression data. Bioinformatics, 2013, 29, 2009-2016.	4.1	38
196	All-optical nonequilibrium pathway to stabilising magnetic Weyl semimetals in pyrochlore iridates. Nature Communications, 2018, 9, 4452.	12.8	38
197	Ultrafast dynamical Lifshitz transition. Science Advances, 2021, 7, .	10.3	38
198	Real-time observation of a correlation-driven sub $3\hat{a}\in\%$ fs charge migration in ionised adenine. Communications Chemistry, 2021, 4, .	4.5	38

#	Article	IF	Citations
199	Mixed-space formalism for the dielectric response in periodic systems. Physical Review B, 1995, 52, R2225-R2228.	3.2	37
200	Onset of nanotube decay under extreme thermal and electronic excitations. Physica B: Condensed Matter, 2002, 323, 78-85.	2.7	37
201	Benchmarking semiclassical and perturbative methods for real-time simulations of cavity-bound emission and interference. Journal of Chemical Physics, 2019, 151, 244113.	3.0	37
202	The role of dimensionality on the quenching of spin-orbit effects in the optics of gold nanostructures. Journal of Chemical Physics, 2008, 129, 144110.	3.0	36
203	Advanced Correlation Functionals:  Application to Bulk Materials and Localized Systems. Journal of Physical Chemistry A, 2007, 111, 12458-12465.	2.5	35
204	Self-consistent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">DFT</mml:mi><mml:mo>+</mml:mo><mml:mi>U</mml:mi></mml:math> method for real-space time-dependent density functional theory calculations. Physical Review B, 2017, 96, .	3.2	35
205	Enhancing and controlling single-atom high-harmonic generation spectra: a time-dependent density-functional scheme. European Physical Journal B, 2015, 88, 1.	1.5	34
206	Influence of packing on the vibrational properties of infinite and finite bundles of carbon nanotubes. Physical Review B, 2001, 64, .	3.2	33
207	Unoccupied states in Cu and Zn octaethyl-porphyrin and phthalocyanine. Journal of Chemical Physics, 2011, 134, 204707.	3.0	33
208	The mechanical bond on carbon nanotubes: diameter-selective functionalization and effects on physical properties. Nanoscale, 2016, 8, 9254-9264.	5.6	33
209	Introduction to the Physics of Silicene and other 2D Materials. Lecture Notes in Physics, 2017, , .	0.7	33
210	Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics with multitrajectory Ehrenfest dynamics. Physical Review A, 2019, 99, .	2.5	33
211	Free electron gas in cavity quantum electrodynamics. Physical Review Research, 2022, 4, .	3.6	33
212	Quasiparticle band-structure effects on thedhole lifetimes of copper within theGWapproximation. Physical Review B, 2002, 66, .	3.2	32
213	Excited states of the green fluorescent protein chromophore: Performance of ⟨i⟩ab initio⟨ i⟩ and semiâ€empirical methods. Physica Status Solidi (B): Basic Research, 2012, 249, 392-400.	1.5	32
214	Local reduced-density-matrix-functional theory: Incorporating static correlation effects in Kohn-Sham equations. Physical Review A, 2014, 90, .	2.5	32
215	Förster-Induced Energy Transfer in Functionalized Graphene. Journal of Physical Chemistry C, 2014, 118, 9283-9289.	3.1	32
216	Efficient and accurate modeling of electron photoemission in nanostructures with TDDFT. European Physical Journal B, 2017, 90, 1.	1.5	32

#	Article	IF	Citations
217	Cavity-Modulated Proton Transfer Reactions. Journal of the American Chemical Society, 2022, 144, 4995-5002.	13.7	32
218	The Nature of Radiative Transitions in TiO2-Based Nanosheets. Journal of Physical Chemistry C, 2012, 116, 18495-18503.	3.1	31
219	Correlation effects in the optical spectra of porphyrin oligomer chains: Exciton confinement and length dependence. Journal of Chemical Physics, 2013, 138, 024312.	3.0	31
220	Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes. ACS Nano, 2014, 8, 1375-1383.	14.6	31
221	Reduced Density-Matrix Approach to Strong Matter-Photon Interaction. ACS Photonics, 2019, 6, 2694-2711.	6.6	31
222	Charge transfer in time-dependent density-functional theory via spin-symmetry breaking. Physical Review A, 2011, 83, .	2.5	30
223	Correlated Electron-Nuclear Dynamics with Conditional Wave Functions. Physical Review Letters, 2014, 113, 083003.	7.8	30
224	Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers. Journal of Physical Chemistry Letters, 2015, 6, 1891-1898.	4.6	30
225	Quantum Electrodynamical Bloch Theory with Homogeneous Magnetic Fields. Physical Review Letters, 2019, 123, 047202.	7.8	30
226	Absorption Spectra of 4â€Nitrophenolate Ions Measured <i>in Vacuo</i> and in Solution. ChemPhysChem, 2009, 10, 1207-1209.	2.1	29
227	Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation. Chemical Science, 2017, 8, 1927-1935.	7.4	29
228	Phonon-Driven Selective Modulation of Exciton Oscillator Strengths in Anatase TiO ₂ Nanoparticles. Nano Letters, 2018, 18, 5007-5014.	9.1	29
229	How Circular Dichroism in Time- and Angle-Resolved Photoemission Can Be Used to Spectroscopically Detect Transient Topological States in Graphene. Physical Review X, 2020, 10, .	8.9	29
230	Plasmon dispersion in molecular solids: Picene and potassium-doped picene. Physical Review B, 2011, 84,	3.2	28
231	Exciton control in a room temperature bulk semiconductor with coherent strain pulses. Science Advances, 2019, 5, eaax2937.	10.3	28
232	GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data. Bioinformatics, 2003, 19, 2158-2160.	4.1	27
233	Substitution effects on the absorption spectra of nitrophenolate isomers. Physical Chemistry Chemical Physics, 2012, 14, 12905.	2.8	27
234	Direct Measurement of Electron-Phonon Coupling with Time-Resolved ARPES. Physical Review Letters, 2020, 125, 136401.	7.8	27

#	Article	IF	CITATIONS
235	Covalent C–N Bond Formation through a Surface Catalyzed Thermal Cyclodehydrogenation. Journal of the American Chemical Society, 2020, 142, 3696-3700.	13.7	27
236	Toward Confined Carbyne with Tailored Properties. Nano Letters, 2021, 21, 1096-1101.	9.1	27
237	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mn>1</mml:mn><mml:mi mathvariant="normal">T<mml:mtext>a^2</mml:mtext><mml:mi>Ta</mml:mi><mml:msub><mml:mrow mathvariant="normal">S</mml:mrow </mml:msub></mml:mi </mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow>	.7.8 ≻∢mml:mi - <td> 27 ow></td>	 27 ow>
238	Physical Review Letters, 2021, 126, 196406. Self-inductance of chiral conducting nanotubes. Physical Review B, 1999, 60, 13885-13889.	3.2	26
239	Cluster-surface and cluster-cluster interactions: <i>Ab initio</i> calculations and modeling of asymptotic van der Waals forces. Physical Review B, 2008, 78, .	3.2	26
240	On the intrinsic optical absorptions by tetrathiafulvalene radical cations and isomers. Chemical Communications, 2011, 47, 6900.	4.1	26
241	Role of intraband transitions in photocarrier generation. Physical Review B, 2018, 98, .	3.2	26
242	Chemistry in Quantum Cavities: Exact Results, the Impact of Thermal Velocities, and Modified Dissociation. Journal of Physical Chemistry Letters, 2020, 11, 7525-7530.	4.6	26
243	Setting the photoelectron clock through molecular alignment. Nature Communications, 2020, 11, 2546.	12.8	26
244	High Harmonics and Isolated Attosecond Pulses from <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mg</mml:mi><mml:mi mathvariant="normal">O</mml:mi></mml:mrow></mml:math> . Physical Review Applied, 2021, 15, .	3.8	26
245	Theoretical Models for the Optical Properties of Clusters and Nanostructures. International Journal of Modern Physics B, 1997, 11, 2727-2776.	2.0	25
246	Development of a novel splice array platform and its application in the identification of alternative splice variants in lung cancer. BMC Genomics, 2010, 11, 352.	2.8	25
247	Supramolecular Environment-Dependent Electronic Properties of Metal–Organic Interfaces Journal of Physical Chemistry C, 2012, 116, 4780-4785.	3.1	25
248	In-Silico Prediction of Key Metabolic Differences between Two Non-Small Cell Lung Cancer Subtypes. PLoS ONE, 2014, 9, e103998.	2.5	25
249	Advances in network-based metabolic pathway analysis and gene expression data integration. Briefings in Bioinformatics, 2015, 16, 265-279.	6.5	25
250	Light-Driven Extremely Nonlinear Bulk Photogalvanic Currents. Physical Review Letters, 2021, 127, 126601.	7.8	25
251	Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl ₃ Heterostructures. Nano Letters, 2022, 22, 1946-1953.	9.1	25
252	Influence of Axial and Peripheral Ligands on the Electronic Structure of Titanium Phthalocyanines. Journal of Physical Chemistry C, 2013, 117, 4410-4420.	3.1	24

#	Article	IF	Citations
253	Band structure of boron doped carbon nanotubes. AIP Conference Proceedings, 2003, , .	0.4	23
254	Can photo excitations heal defects in carbon nanotubes?. Chemical Physics Letters, 2004, 392, 209-213.	2.6	23
255	Time-dependent density functional approach for the calculation of inelastic x-ray scattering spectra of molecules. Journal of Chemical Physics, 2010, 133, 174111.	3.0	23
256	A survey of the parallel performance and accuracy of Poisson solvers for electronic structure calculations. Journal of Computational Chemistry, 2014, 35, 427-444.	3.3	23
257	Density functional theory study of the $\hat{1}$ $\hat{1}$ phase transition in cerium: Role of electron correlation and f-orbital localization. Physical Review B, 2016, 93, .	3.2	23
258	Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2]Âcycloadditions. Nature Communications, 2020, 11, 1490.	12.8	23
259	SMALL BAND-GAP GRAPHITIC CBN LAYERS. Journal of Physics and Chemistry of Solids, 1998, 59, 1303-1308.	4.0	22
260	Absorption of BN nanotubes under the influence of a perpendicular electric field. Physica Status Solidi (B): Basic Research, 2007, 244, 4288-4292.	1.5	22
261	<i>Ab initio</i> study of transport properties in defected carbon nanotubes: an O(<i>N</i>) approach. Journal of Physics Condensed Matter, 2008, 20, 294214.	1.8	22
262	The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory?. Comptes Rendus Physique, 2009, 10, 469-490.	0.9	22
263	Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible. Scientific Reports, 2013, 3, 2698.	3.3	22
264	Modifying the Interlayer Interaction in Layered Materials with an Intense IR Laser. Physical Review Letters, 2015, 114, 116102.	7.8	22
265	Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model. Journal of Chemical Theory and Computation, 2019, 15, 2221-2232.	5.3	22
266	Quantum paraelectric phase of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3<td>l:n3n2 <td>ml212sub></td></td></mml:mn></mml:msub></mml:math>	l:n 3n2 <td>ml212sub></td>	ml 212 sub>
267	On the Effect of a Single Solvent Molecule on the Charge-Transfer Band of a Donor–Acceptor Anion. Journal of the American Chemical Society, 2013, 135, 6818-6821.	13.7	21
268	Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures. Physical Review B, 2014, 90, .	3.2	21
269	Spectroscopy of Nitrophenolates in Vacuo: Effect of Spacer, Configuration, and Microsolvation on the Charge-Transfer Excitation Energy. Accounts of Chemical Research, 2014, 47, 1417-1425.	15.6	21
270	Conditional Born–Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine. Journal of Physical Chemistry Letters, 2015, 6, 1529-1535.	4.6	21

#	Article	IF	CITATIONS
271	Optical Properties of Nanostructures from Time-Dependent Density Functional Theory. Journal of Computational and Theoretical Nanoscience, 2004, 1, 231-255.	0.4	21
272	Modeling of laser-pulse induced water decomposition on two-dimensional materials by simulations based on time-dependent density functional theory. Physical Review B, 2017, 96, .	3.2	20
273	Comparison of RNA-seq and microarray platforms for splice event detection using a cross-platform algorithm. BMC Genomics, 2018, 19, 703.	2.8	20
274	A 400,000-year-old Acheulean assemblage associated with the Aroeira-3 human cranium (Gruta da) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 5
275	Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4135-4140.	7.1	20
276	Out-of-Plane Transport of 1T-TaS ₂ /Graphene-Based van der Waals Heterostructures. ACS Nano, 2021, 15, 11898-11907.	14.6	20
277	Polaritonic Hofstadter butterfly and cavity control of the quantized Hall conductance. Physical Review B, 2022, 105, .	3.2	20
278	Photodesorption of oxygen from carbon nanotubes. Physical Review B, 2004, 70, .	3.2	19
279	Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires. Nano Research, 2015, 8, 2611-2619.	10.4	19
280	On the Exciton Coupling between Two Chlorophyll Pigments in the Absence of a Protein Environment: Intrinsic Effects Revealed by Theory and Experiment. Angewandte Chemie - International Edition, 2016, 55, 6248-6251.	13.8	19
281	Exact functionals for correlated electron–photon systems. New Journal of Physics, 2017, 19, 113036.	2.9	19
282	Ab Initio Simulation of Attosecond Transient Absorption Spectroscopy in Two-Dimensional Materials. Applied Sciences (Switzerland), 2018, 8, 1777.	2.5	19
283	Light–Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics. Journal of Chemical Theory and Computation, 2020, 16, 5601-5620.	5.3	19
284	TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2. APL Materials, 2022, 10, .	5.1	19
285	Common microscopic origin of the phase transitions in Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5. Npj Computational Materials, 2021, 7, .	8.7	19
286	Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach. Physical Review B, 2009, 79, .	3.2	18
287	Stark Ionization of Atoms and Molecules within Density Functional Resonance Theory. Journal of Physical Chemistry Letters, 2013, 4, 2734-2738.	4.6	18
288	Local-field effects on the plasmon dispersion of two-dimensional transition metal dichalcogenides. New Journal of Physics, 2013, 15, 125005.	2.9	18

#	ARTICLE	IF	Citations
289	Interplay between structure and electronic properties of layered transition-metal dichalcogenides: Comparing the loss function of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mn>1</mml:mn><mml:mi>T</mml:mi> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>H</mml:mi></mml:mrow></mml:mrow>	ൃമml:mr > <th>o1/8></th>	o 1/8 >
290	Electron–phonon-driven three-dimensional metallicity in an insulating cuprate. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6409-6416.	7.1	18
291	Phonoritons as Hybridized Exciton-Photon-Phonon Excitations in a Monolayer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi></mml:math> -BN Optical Cavity. Physical Review Letters, 2021, 126, 227401.	7.8	18
292	Light-induced topological magnons in two-dimensional van der Waals magnets. SciPost Physics, 2020, 9, .	4.9	18
293	Fingerprints of Bonding Motifs in DNA Duplexes of Adenine and Thymine Revealed from Circular Dichroism: Synchrotron Radiation Experiments and TDDFT Calculations. Journal of Physical Chemistry B, 2009, 113, 9614-9619.	2.6	17
294	Spectroscopic Characterization of Solventâ€Mediated Folding in Dicarboxylate Dianions. Angewandte Chemie - International Edition, 2011, 50, 3807-3810.	13.8	17
295	Engineering Photophenomena in Large, 3D Structures Composed of Selfâ€Assembled van der Waals Heterostructure Flakes. Advanced Optical Materials, 2015, 3, 1551-1556.	7.3	17
296	Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra. European Physical Journal B, 2016, 89, 1.	1.5	17
297	Force balance approach for advanced approximations in density functional theories. Journal of Chemical Physics, 2019, 151, 154107.	3.0	17
298	Electron linewidths of wide-gap insulators: Excitonic effects inLiF. Physical Review B, 2004, 70, .	3.2	16
299	<i>Ab initio</i> study of the dielectric response of crystalline ropes of metallic single-walled carbon nanotubes: Tube-diameter and helicity effects. Physical Review B, 2008, 78, .	3.2	16
300	First-Principles Simulations of Chemical Reactions in an HCl Molecule Embedded inside a C or BN Nanotube Induced by Ultrafast Laser Pulses. Physical Review Letters, 2010, 105, 248301.	7.8	16
301	Systematic construction of density functionals based on matrix product state computations. New Journal of Physics, 2016, 18, 083039.	2.9	16
302	Detecting multiple chiral centers in chiral molecules with high harmonic generation. Optics Express, 2022, 30, 3729.	3.4	16
303	Microscopic investigation of laser-induced structural changes in single-wall carbon nanotubes. Physical Review B, 2007, 75, .	3.2	15
304	Doubleâ€Bond versus Tripleâ€Bond Bridges: Does it Matter for the Chargeâ€Transfer Absorption by Donorâ€"Acceptor Chromophores?. ChemPhysChem, 2010, 11, 2495-2498.	2.1	15
305	Supramolecular Assembly of Diplatinum Species through Weak Pt ^{II} â<â<â <pt<sup>IIIntermolecular Interactions: A Combined Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 13787-13799.</pt<sup>	3.3	15
306	Loss spectroscopy of molecular solids: combining experiment and theory. New Journal of Physics, 2013, 15, 125024.	2.9	15

#	Article	IF	CITATIONS
307	Quasi-particle energy spectra in local reduced density matrix functional theory. Journal of Chemical Physics, 2014, 141, 164120.	3.0	15
308	High-energy collective electronic excitations in layered transition-metal dichalcogenides. Physical Review B, 2014, 90, .	3.2	15
309	Noncovalent Dimerization after Enediyne Cyclization on Au(111). Journal of the American Chemical Society, 2016, 138, 10963-10967.	13.7	15
310	First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory. European Physical Journal B, 2018, 91, 1.	1.5	15
311	Quasiparticle and Optical Properties of Solids and Nanostructures: The GW-BSE Approach. , 2005, , 215-240.		15
312	Response Functions in TDDFT: Concepts and Implementation. Lecture Notes in Physics, 2012, , 139-166.	0.7	14
313	Multiple-orbital effects in laser-induced electron diffraction of aligned molecules. Physical Review A, 2018, 98, .	2.5	14
314	Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations. Journal of Chemical Theory and Computation, 2019, 15, 5209-5220.	5. 3	14
315	Room Temperature Terahertz Electroabsorption Modulation by Excitons in Monolayer Transition Metal Dichalcogenides. Nano Letters, 2020, 20, 5214-5220.	9.1	14
316	Ab Initio Cluster Approach for High Harmonic Generation in Liquids. Journal of Chemical Theory and Computation, 0, , .	5. 3	14
317	Laser-induced preferential dehydrogenation of graphane. Physical Review B, 2012, 85, .	3.2	13
318	Electronic structure of Fe- vs. Ru-based dye molecules. Journal of Chemical Physics, 2013, 138, 044709.	3.0	13
319	Effect of a Single Water Molecule on the Electronic Absorption by $\langle i \rangle \circ \langle i \rangle$ - and $\langle i \rangle \circ \langle i \rangle$ -Nitrophenolate: A Shift to the Red or to the Blue?. Journal of Physical Chemistry A, 2015, 119, 11498-11503.	2.5	13
320	Exact maps in density functional theory for lattice models. New Journal of Physics, 2016, 18, 083004.	2.9	13
321	Entangled photon assisted multidimensional nonlinear optics of exciton–polaritons. Journal of Applied Physics, 2020, 128, 113102.	2.5	13
322	Nematicity Arising from a Chiral Superconducting Ground State in Magic-Angle Twisted Bilayer Graphene under In-Plane Magnetic Fields. Physical Review Letters, 2021, 127, 127001.	7.8	13
323	Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
324	Effect of spin-orbit coupling on the high harmonics from the topological Dirac semimetal Na3Bi. Npj Computational Materials, 2022, 8, .	8.7	13

#	Article	IF	CITATIONS
325	Optical and Vibrational Properties of Boron Nitride Nanotubes. , 2009, , 105-148.		12
326	Photoinduced Absorption within Single-Walled Carbon Nanotube Systems. Journal of Physical Chemistry C, 2016, 120, 1926-1935.	3.1	12
327	Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics. Physical Review B, 2018, 97, .	3.2	12
328	Dynamical amplification of electric polarization through nonlinear phononics in 2D SnTe. Npj Computational Materials, 2020, 6, .	8.7	12
329	Ultrafast transient absorption spectroscopy of the charge-transfer insulator NiO: Beyond the dynamical Franz-Keldysh effect. Physical Review B, 2020, 102, .	3.2	12
330	Nonadiabatic quantum dynamics without potential energy surfaces. Physical Review Materials, 2019, 3,	2.4	12
331	Time and energy-resolved two photon photoemission of the Cu(100) and Cu(111) metal surfaces. Computational Materials Science, 2004, 30, 110-115.	3.0	11
332	Long-lived oscillatory incoherent electron dynamics in molecules: <i>trans</i> -polyacetylene oligomers. New Journal of Physics, 2013, 15, 043004.	2.9	11
333	Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?. Journal of Chemical Physics, 2015, 143, 054106.	3.0	10
334	Universal steps in quantum dynamics with time-dependent potential-energy surfaces: Beyond the Born-Oppenheimer picture. Physical Review A, 2016, 94, .	2.5	10
335	Negative plasmon dispersion in 2 <i>H</i> -NbS ₂ beyond the charge-density-wave interpretation. New Journal of Physics, 2016, 18, 103050.	2.9	10
336	Vibrational coherent control of localized d–d electronic excitation. Nature Physics, 2021, 17, 368-373.	16.7	10
337	Engineering Three-Dimensional Moiré Flat Bands. Nano Letters, 2021, 21, 7519-7526.	9.1	10
338	Lowest excitation energy in atoms in the adiabatic approximation related to the single-particle kinetic energy functional. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 2173-2179.	1.5	9
339	Metallicity retained by covalent functionalization of graphene with phenyl groups. Nanoscale, 2013, 5, 7537.	5.6	9
340	Design of two-photon molecular tandem architectures for solar cells by ab initio theory. Chemical Science, 2015, 6, 3018-3025.	7.4	9
341	Strong chiral dichroism and enantiopurification in above-threshold ionization with locally chiral light. Physical Review Research, 2021, 3, .	3.6	9
342	First-principles modelling for time-resolved ARPES under different pump–probe conditions. Journal of Electron Spectroscopy and Related Phenomena, 2022, 254, 147152.	1.7	9

#	Article	IF	CITATIONS
343	Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light–Matter Systems. Journal of Chemical Theory and Computation, 2022, 18, 4354-4365.	5.3	9
344	Solvent-mediated folding of dicarboxylate dianions: aliphatic chain length dependence and origin of the IR intensity quenching. Physical Chemistry Chemical Physics, 2013, 15, 20463.	2.8	8
345	Crossâ€Conjugation vs. Linear Conjugation in Donor–Bridge–Acceptor Nitrophenol Chromophores. European Journal of Organic Chemistry, 2014, 2014, 2044-2052.	2.4	8
346	Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 18316-18322.	3.1	8
347	Anomalous anisotropic exciton temperature dependence in rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2<td>nn3.2/mml</td><td>:msub></td></mml:mn></mml:msub></mml:math>	nn 3.2 /mml	:m s ub>
348	TDDFT-Based Study on the Proton–DNA Collision. Journal of Physical Chemistry B, 2017, 121, 7276-7283.	2.6	8
349	Giant Exciton Mott Density in Anatase <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>nl:ma>2<!--</td--><td>m&l:mn></td></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl :ma >2 </td <td>m&l:mn></td>	m &l: mn>
350	Simulating Vibronic Spectra without Born–Oppenheimer Surfaces. Journal of Physical Chemistry Letters, 2021, 12, 3074-3081.	4.6	8
351	Down-conversion processes in <i>ab initio</i> nonrelativistic quantum electrodynamics. Physical Review Research, 2021, 3, .	3.6	8
352	Moiré engineering of spin–orbit coupling in twisted platinum diselenide. Electronic Structure, 2022, 4, 014004.	2.8	8
353	Microscopic theory of light-induced ultrafast skyrmion excitation in transition metal films. Npj Computational Materials, 2022, 8, .	8.7	8
354	Collective excitations of embedded potassium clusters. Zeitschrift F $\tilde{A}\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1993, 26, 122-124.	1.0	7
355	The Isolation of Single MMX Chains from Solution: Unravelling the Assembly–Disassembly Process. Chemistry - A European Journal, 2013, 19, 15518-15529.	3.3	7
356	Nonadiabatic and Time-Resolved Photoelectron Spectroscopy for Molecular Systems. Journal of Chemical Theory and Computation, 2014, 10, 1665-1676.	5.3	7
357	Stability of the Dirac cone in artificial graphene formed in quantum wells: a computational many-electron study. New Journal of Physics, 2016, 18, 083014.	2.9	7
358	Kinetic-Energy Density-Functional Theory on a Lattice. Journal of Chemical Theory and Computation, 2018, 14, 4072-4087.	5.3	7
359	Single and double charge transfer in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>Ne<td>ml:2015> <td>mlzmrow> < n</td></td></mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>	ml: 2 015> <td>mlzmrow> < n</td>	ml z mrow> < n
360	Photoionization and transient Wannier-Stark ladder in silicon: First-principles simulations versus Keldysh theory. Physical Review B, 2021, 104, .	3.2	7

#	Article	IF	Citations
361	PFO–BPy solubilizers for SWNTs: Modelling of polymers from oligomers. Physica Status Solidi (B): Basic Research, 2014, 251, 2407-2412.	1.5	6
362	Optical field terahertz amplitude modulation by graphene nanoribbons. Nanoscale, 2015, 7, 19012-19017.	5.6	6
363	Optimal control theory for quantum electrodynamics: an initial state problem. European Physical Journal B, 2019, 92, 1.	1.5	6
364	Virial Relations for Electrons Coupled to Quantum Field Modes. Journal of Chemical Theory and Computation, 2020, 16, 6236-6243.	5. 3	6
365	Orbital magneto-optical response of periodic insulators from first principles. Npj Computational Materials, 2019, 5, .	8.7	5
366	Photoabsorption spectra of small cationic xenon clusters from time-dependent density functional theory. Journal of Chemical Physics, 2009, 131, 214302.	3.0	4
367	Pulse-induced nonequilibrium dynamics of acetylene inside carbon nanotube studied by an ab initio approach. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8861-8865.	7.1	4
368	On the Exciton Coupling between Two Chlorophyll Pigments in the Absence of a Protein Environment: Intrinsic Effects Revealed by Theory and Experiment. Angewandte Chemie, 2016, 128, 6356-6359.	2.0	4
369	<i>Ab initio</i> Modelling of Plasmons in Metalâ€semiconductor Bilayer Transitionâ€metal Dichalcogenide Heterostructures. Israel Journal of Chemistry, 2017, 57, 540-546.	2.3	4
370	Germanene, Stanene and Other 2D Materials. Lecture Notes in Physics, 2017, , 63-85.	0.7	4
371	Integration of CLIP experiments of RNA-binding proteins: a novel approach to predict context-dependent splicing factors from transcriptomic data. BMC Genomics, 2019, 20, 521.	2.8	4
372	A new Hall for quantum protection. Science, 2022, 375, 976-977.	12.6	4
373	Electronic Structure Calculations for Nanomolecular Systems. , 2006, , 77-116.		3
374	Recent Memory and Performance Improvements in Octopus Code. Lecture Notes in Computer Science, 2014, , 607-622.	1.3	3
375	Dynamical Processes in Open Quantum Systems from a TDDFT Perspective: Resonances and Electron Photoemission. Topics in Current Chemistry, 2015, 368, 219-271.	4.0	3
376	Freestanding Silicene. Lecture Notes in Physics, 2017, , 13-39.	0.7	3
377	Role of electron scattering on the high-order harmonic generation from solids. Physical Review Research, 2020, 2, .	3.6	3
378	Tailoring Electronic and Optical Properties of TiO ₂ : Nanostructuring, Doping and Molecular-Oxide Interactions., 2011,, 301-329.		2

#	Article	IF	CITATIONS
379	Four electrons interacting pairwise in the limit of infinitesimal confining potentials: Especially the quintet spin state. Chemical Physics Letters, 2012, 536, 162-164.	2.6	2
380	Energyâ€ŧransfer in porphyrin―functionalized graphene. Physica Status Solidi (B): Basic Research, 2014, 251, 2495-2498.	1.5	2
381	Photo-induced strengthening of weak bonding in noble gas dimers. Applied Physics Letters, 2014, 104, 201107.	3.3	2
382	Light-Induced Charge Transfer from Transition-Metal-Doped Aluminum Clusters to Carbon Dioxide. Journal of Physical Chemistry A, 2021, 125, 5878-5885.	2.5	2
383	Ultrafast dynamics of adenine following XUV ionization. JPhys Photonics, 0, , .	4.6	2
384	Electronic Structure of Materials by Ab Initio Methods: Overview., 2018,, 1-6.		1
385	Atomic and Electronic Structure of Silicene on Ag: A Theoretical Perspective. Nanoscience and Technology, 2018, , 159-178.	1.5	1
386	Exact exchange-correlation potential of effectively interacting Kohn-Sham systems. Physical Review A, 2020, 101, .	2.5	1
387	Approximations based on density-matrix embedding theory for density-functional theories. Electronic Structure, 2021, 3, 035001.	2.8	1
388	Electronic and Doping Properties of B x C y N z Nanotubes. , 1997, , 133-142.		1
389	Conditional Wave Function Theory: A Unified Treatment of Molecular Structure and Nonadiabatic Dynamics. Journal of Chemical Theory and Computation, 2021, , .	5.3	1
390	Comment on "Origin of symmetry-forbidden high-order harmonic generation in the time-dependent Kohn-Sham formulation― Physical Review A, 2022, 105, .	2.5	1
391	Entangled Biphoton Enhanced Double Quantum Coherence Signal as a Probe for Cavity Polariton Correlations in Presence of Phonon Induced Dephasing. Frontiers in Physics, 0, 10, .	2.1	1
392	Generalized time-dependent density-functional theory including core polarization. European Physical Journal D, 1998, 48, 756-759.	0.4	0
393	A proposed family of variationally correlated first-order density matrices for spin-polarized three-electron model atoms. Journal of Mathematical Chemistry, 2013, 51, 763-773.	1.5	0
394	Coherent ultrafast charge transfer in an organic photovoltaic blend. , 2014, , .		0
395	Emergent photophenomena in three dimensional van der Waals heterostructures. , 2015, , .		0
396	Electronic Structure of Low-Dimensional Carbon π-Systems. Journal of Physical Chemistry C, 2016, 120, 12362-12368.	3.1	0

#	Article	IF	CITATIONS
397	A Brief History of Silicene. Lecture Notes in Physics, 2017, , 1-11.	0.7	O
398	Multilayer Silicene. Lecture Notes in Physics, 2017, , 53-61.	0.7	O
399	Special issue in honor of Eberhard K.U. Gross for his 65th birthday. European Physical Journal B, 2018, 91, 1.	1.5	0
400	Electronic Structure of Materials by Ab Initio Methods: Overview., 2018,, 1-6.		0
401	Attosecond Electron Localization and Screening Dynamics in Metals. , 2019, , .		0
402	Quantitative Waveform Sampling on Atomic Scales. , 2021, , .		0
403	Theoretical Methods. Physical Chemistry in Action, 2013, , 45-65.	0.6	O
404	Optical response of Ag clusters. , 1997, , 262-264.		0
405	Electronic Structure of Materials by Ab Initio Methods: Overview. , 2019, , 1-6.		O
406	Electronic Structure of Materials by Ab Initio Methods: Overview., 2020,, 207-212.		0
407	Application of the Electronic Properties of Carbon Nanotubes: Computation of the Magnetic Properties and the 13C NMR Shifts. , 2004, , 343-358.		O