Nachum Dafny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1073581/publications.pdf Version: 2024-02-01

Νλάμιμα Πλενίν

#	Article	IF	CITATIONS
1	The role of age, genotype, sex, and route of acute and chronic administration of methylphenidate: A review of its locomotor effects. Brain Research Bulletin, 2006, 68, 393-405.	3.0	116
2	Sensitization to locomotor effects of methylphenidate in the rat. Life Sciences, 1997, 61, PL101-PL107.	4.3	100
3	Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Research, 2003, 971, 139-152.	2.2	99
4	Chronic exposure to MDMA (Ecstasy) elicits behavioral sensitization in rats but fails to induce cross-sensitization to other psychostimulants. Behavioral and Brain Functions, 2006, 2, 1.	3.3	98
5	Diurnal differences in sensitization to methylphenidate. Brain Research, 2000, 864, 24-39.	2.2	96
6	Acute and chronic methylphenidate dose–response assessment on three adolescent male rat strains. Brain Research Bulletin, 2006, 71, 301-310.	3.0	93
7	Dose response characteristics of methylphenidate on different indices of rats' locomotor activity at the beginning of the dark cycle. Brain Research, 1996, 727, 13-21.	2.2	73
8	Interferon and the central nervous system. European Journal of Pharmacology, 2005, 523, 1-15.	3.5	69
9	METHYLPHENIDATE (RITALIN): BEHAVIORAL STUDIES IN THE RAT. International Journal of Neuroscience, 2007, 117, 757-794.	1.6	68
10	Chronic pretreatment with methylphenidate induces cross-sensitization with amphetamine. Life Sciences, 2003, 73, 2899-2911.	4.3	53
11	Dorsal raphe stimulation reduces responses of parafascicular neurons to noxious stimulation 1. Pain, 1983, 15, 323-331.	4.2	52
12	ls interferon-Î \pm a neuromodulator?. Brain Research Reviews, 1998, 26, 1-15.	9.0	52
13	MK-801 blocks the development of sensitization to the locomotor effects of methylphenidate. Brain Research Bulletin, 2000, 51, 485-492.	3.0	50
14	Chronic administration of methylphenidate produces neurophysiological and behavioral sensitization. Brain Research, 2007, 1145, 66-80.	2.2	50
15	Methylphenidate: diurnal effects on locomotor and stereotypic behavior in the rat. Brain Research, 1997, 777, 1-12.	2.2	49
16	DIFFERENTIAL LOCOMOTOR RESPONSES IN MALE RATS FROM THREE STRAINS TO ACUTE METHYLPHENIDATE. International Journal of Neuroscience, 2004, 114, 1063-1084.	1.6	49
17	Prolonged methylphenidate treatment alters the behavioral diurnal activity pattern of adult male Sprague-Dawley rats. Pharmacology Biochemistry and Behavior, 2009, 92, 93-99.	2.9	48
18	Diurnal differences in amphetamine sensitization. European Journal of Pharmacology, 1999, 374, 1-9.	3.5	47

#	Article	IF	CITATIONS
19	Chronic methylphenidate modulates locomotor activity and sensory evoked responses in the VTA and NAc of freely behaving rats. Neuropharmacology, 2006, 51, 546-556.	4.1	47
20	Dose-response characteristics of methylphenidate on locomotor behavior and on sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats. Behavioral and Brain Functions, 2006, 2, 3.	3.3	44
21	Suppression of the induction of delayed hypersensitivity in rats by repetitive morphine treatments. Experimental Neurology, 1986, 93, 92-97.	4.1	43
22	Effects of lithium chloride on induction and expression of methylphenidate sensitization. European Journal of Pharmacology, 2001, 426, 65-72.	3.5	41
23	Does repetitive Ritalin injection produce long-term effects on SD female adolescent rats?. Neuropharmacology, 2009, 57, 201-207.	4.1	38
24	Behavioral sensitization and cross-sensitization between methylphenidate amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in female SD rats. European Journal of Pharmacology, 2011, 661, 72-85.	3.5	37
25	Modification of morphine withdrawal by interferon. Life Sciences, 1983, 32, 303-305.	4.3	36
26	Diurnal differences in rat's motor response to amphetamine. European Journal of Pharmacology, 1998, 345, 119-128.	3.5	36
27	Hypothalamic Neuronal Activity Associated with Onset of Pseudopregnancy in the Rat. Neuroendocrinology, 1990, 51, 459-467.	2.5	35
28	Habenular neuron responses to noxious input are modified by dorsal raphe stimulation. Neurological Research, 1990, 12, 117-121.	1.3	35
29	Interferon modulates neuronal activity recorded from the hypothalamus, thalamus, hippocampus, amygdala and the somatosensory cortex. Brain Research, 1996, 734, 269-274.	2.2	35
30	Nucleus accumbens lesions modulate the effects of methylphenidate. Brain Research Bulletin, 2010, 82, 293-301.	3.0	35
31	Sensory-evoked potentials recordings from the ventral tegmental area, nucleus accumbens, prefrontal cortex, and caudate nucleus and locomotor activity are modulated in dose–response characteristics by methylphenidate. Brain Research, 2006, 1073-1074, 164-174.	2.2	34
32	Adolescent and Adult Male Spontaneous Hyperactive Rats (SHR) Respond Differently to Acute and Chronic Methylphenidate (Ritalin). International Journal of Neuroscience, 2009, 119, 40-58.	1.6	34
33	Age and genetic strain differences in response to chronic methylphenidate administration. Behavioural Brain Research, 2011, 218, 206-217.	2.2	33
34	Locus Coeruleus Stimulation Modulates the Nociceptive Response in Parafascicular Neurons: An Analysis of Descending and Ascending Pathways. Brain Research Bulletin, 1997, 42, 273-278.	3.0	32
35	Acute and chronic dose–response effect of methylphenidate on ventral tegmental area neurons correlated with animal behavior. Journal of Neural Transmission, 2014, 121, 327-345.	2.8	32
36	Valproate modulates the expression of methylphenidate (ritalin) sensitization. Brain Research, 2000, 874, 216-220.	2.2	31

#	Article	IF	CITATIONS
37	Methylphenidate sensitization is modulated by valproate. Life Sciences, 2001, 69, 47-57.	4.3	31

 $_{38}$ Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{2.2}^{9}$

39	Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration. Brain Research Bulletin, 2012, 87, 445-456.	3.0	29
40	The hypothalamus exhibits electrophysiologic evidence for morphine tolerance and dependence. Experimental Neurology, 1982, 77, 66-77.	4.1	28
41	Acute and chronic methylphenidate modulates the neuronal activity of the caudate nucleus recorded from freely behaving rats. Brain Research Bulletin, 2012, 87, 387-396.	3.0	27
42	Acute and chronic methylphenidate alters prefrontal cortex neuronal activity recorded from freely behaving rats. European Journal of Pharmacology, 2012, 679, 60-67.	3.5	25
43	Valproate prevents the induction of sensitization to methylphenidate (ritalin) in rats. Brain Research, 2000, 887, 276-284.	2.2	24
44	Methylphenidate sensitization is prevented by prefrontal cortex lesion. Brain Research Bulletin, 2008, 76, 131-140.	3.0	24
45	Methylphenidate Treated at the Test Cage—Dose-Dependent Sensitization or Tolerance Depend on the Behavioral Assay Used. Critical Reviews in Neurobiology, 2007, 19, 59-77.	3.1	24
46	Characterization of spontaneous unit activity in hypothalamus and reticular formation recorded with semimicroelectrodes. Brain Research, 1973, 59, 243-255.	2.2	23
47	Effects of amphetamine at the beginning of the light cycle on multiple indices of motor activity in the rat. European Journal of Pharmacology, 1996, 300, 1-8.	3.5	22
48	Trans-cranial electrical stimulation attenuates abrupt morphine withdrawal in rats assayed by remote computerized quantification of multiple motor behavior indices. European Journal of Pharmacology, 1990, 175, 187-195.	3.5	20
49	Nucleus accumbens neuronal activity correlates to the animal's behavioral response to acute and chronic methylphenidate. Physiology and Behavior, 2014, 129, 85-94.	2.1	20
50	Behavioral tolerance to and withdrawal from multiple fluxetine administration. International Journal of Neuroscience, 1998, 93, 163-179.	1.6	19
51	SEROTONIN MODULATES HYPOTHALAMIC NEURONAL ACTIVITY. International Journal of Neuroscience, 2004, 114, 299-319.	1.6	19
52	Multiunit recording from medial basal hypothalamus following acute and chronic morphine treatment. Brain Research, 1980, 190, 584-592.	2.2	18
53	NMDA receptor antagonist disrupts acute and chronic effects of methylphenidate. Physiology and Behavior, 2000, 71, 133-145.	2.1	18
54	Valproate prevents the induction and the expression of MK-801 sensitization. Brain Research, 2002, 954, 151-159.	2.2	18

#	Article	IF	CITATIONS
55	Blockade of sensitization to methylphenidate by MK-801: partial dissociation from motor effects. Neuropharmacology, 2001, 40, 298-309.	4.1	17
56	Dose response effect of methylphenidate on ventral tegmental area neurons and animal behavior. Brain Research Bulletin, 2013, 96, 86-92.	3.0	17
57	Dorsal raphe neuronal activities are modulated by methylphenidate. Journal of Neural Transmission, 2013, 120, 721-731.	2.8	16
58	Behavioral and neuronal recording of the nucleus accumbens in adolescent rats following acute and repetitive exposure to methylphenidate. Journal of Neurophysiology, 2015, 113, 369-379.	1.8	16
59	Neurophysiological evidence for tolerance and dependence on opiates: Simultaneous multiunit recordings from septum, thalamus, and caudate nucleus. Journal of Neuroscience Research, 1980, 5, 339-349.	2.9	15
60	Disruption of sensitization to methylphenidate by a single administration of MK-801. Life Sciences, 2002, 70, 2271-2285.	4.3	15
61	Behavioral and dorsal raphe neuronal activity following acute and chronic methylphenidate in freely behaving rats. Brain Research Bulletin, 2013, 98, 53-63.	3.0	15
62	ATP-Sensitive potassium channels mediate norepinephrine- and morphine-induced antinociception at the spinal cord level. International Journal of Neuroscience, 1998, 93, 217-223.	1.6	14
63	Morphine administration and abrupt cessation alter the behavioral diurnal activity pattern. Pharmacology Biochemistry and Behavior, 2012, 101, 544-552.	2.9	14
64	Effects of Intrathecal Monoamine Antagonists on the Nociceptive c-Fos Expression in a Lesioned Rat Spinal Cord. International Journal of Neuroscience, 1997, 91, 169-180.	1.6	13
65	Methylphenidate modulates dorsal raphe neuronal activity: Behavioral and neuronal recordings from adolescent rats. Brain Research Bulletin, 2017, 128, 48-57.	3.0	13
66	The prefrontal cortex and the caudate nucleus respond conjointly to methylphenidate (Ritalin). Concomitant behavioral and neuronal recording study. Brain Research Bulletin, 2020, 157, 77-89.	3.0	13
67	Single Injection of Three Different Preparations of α-Interferon Modifies Morphine Abstinence Signs for a Prolonged Period. International Journal of Neuroscience, 1987, 32, 953-961.	1.6	12
68	Cyclophosphamide and cortisol reduce the severity of morphine withdrawal. International Journal of Immunopharmacology, 1987, 9, 453-457.	1.1	12
69	Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats. Journal of Neurophysiology, 2017, 118, 1501-1514.	1.8	12
70	Repetitive Ritalin Treatment Modulates the Diurnal Activity Pattern of Young SD Male Rats. Central Nervous System Agents in Medicinal Chemistry, 2010, 10, 247-257.	1.1	12
71	Methylphenidate modulates the locus ceruleus neuronal activity in freely behaving rat. European Journal of Pharmacology, 2012, 695, 48-56.	3.5	11
72	Repetitive methylphenidate administration modulates the diurnal behavioral activity pattern of adult female SD rats. Journal of Neural Transmission, 2011, 118, 285-298.	2.8	10

#	Article	IF	CITATIONS
73	Selective bilateral lesion to caudate nucleus modulates the acute and chronic methylphenidate effects. Pharmacology Biochemistry and Behavior, 2012, 101, 208-216.	2.9	10
74	Caudate neuronal recording in freely behaving animals following acute and chronic dose response methylphenidate exposure. Pharmacology Biochemistry and Behavior, 2015, 136, 21-30.	2.9	10
75	Concomitant behavioral and PFC neuronal activity recorded following dose-response protocol of MPD in adult male rats. Brain Research Bulletin, 2017, 130, 125-137.	3.0	10
76	D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure. Journal of Neural Transmission, 2017, 124, 159-170.	2.8	10
77	Locus coeruleus neuronal activity correlates with behavioral response to acute and chronic doses of methylphenidate (Ritalin) in adolescent rats. Journal of Neural Transmission, 2017, 124, 1239-1250.	2.8	9
78	Caudate nucleus neurons participate in methylphenidate function: Behavioral and neuronal recordings from freely behaving adolescent rats. Brain Research Bulletin, 2018, 142, 241-252.	3.0	8
79	Electrophysiological Properties of Caudate Neurons Following Substantia nigra, Motor Cortex, and Amygdaloid Nuclear Complex Stimulation of the Rat. Stereotactic and Functional Neurosurgery, 1975, 38, 259-272.	1.5	7
80	Single exposure of dopamine D1 antagonist prevents and D2 antagonist attenuates methylphenidate effect. Journal of Experimental Pharmacology, 2015, 7, 1.	3.2	7
81	Glutaminergic signaling in the caudate nucleus is required for behavioral sensitization to methylphenidate. Pharmacology Biochemistry and Behavior, 2019, 184, 172737.	2.9	7
82	Ventral Tegmental Area Neuronal Activity Correlates to Animals' Behavioral Response to Chronic Methylphenidate Recorded from Adolescent SD Male Rats. Journal of Behavioral and Brain Science, 2014, 04, 168-189.	0.5	7
83	Acute administration of methylphenidate alters the prefrontal cortex neuronal activity in a dose–response characteristic. Journal of Experimental Pharmacology, 2014, 6, 1.	3.2	6
84	Methylphenidate dose–response behavioral and neurophysiological study of the ventral tegmental area and nucleus accumbens in adolescent rats. European Journal of Neuroscience, 2019, 50, 2635-2652.	2.6	6
85	Exposure to methylphenidate in adolescence and adulthood modulates cross-sensitization to amphetamine in adulthood in three genetically variant female rat strains. Behavioural Brain Research, 2019, 362, 36-45.	2.2	6
86	Concomitant behavioral and prefrontal cortex neuronal responses following acute and chronic methylphenidate exposure in adolescent and adult rats. Brain Research Bulletin, 2019, 144, 200-212.	3.0	6
87	Behavioral daily rhythmic activity pattern of adolescent female rat is modulated by acute and chronic cocaine. Journal of Neural Transmission, 2013, 120, 733-744.	2.8	5
88	Characterization of unit activity recorded from septum, thalamus, and caudate following incremental opiate treatment. Journal of Neuroscience Research, 1980, 5, 117-127.	2.9	4
89	Ritalin Dose Response Effect on Medial Prefrontal Cortex and on Animal Behavior. Journal of Behavioral and Brain Science, 2016, 06, 124-142.	0.5	4
90	Does A Rat's Exposure to Cocaine During Adolescence Affect its Response to Cocaine in Adulthood?. International Journal of Neuroscience, 2009, 119, 879-907.	1.6	3

#	Article	lF	CITATIONS
91	MDMA (ecstasy) modulates locomotor and prefrontal cortex sensory evoked activity. Brain Research, 2009, 1302, 175-182.	2.2	3
92	Alcohol usage and abrupt cessation modulate diurnal activity. Brain Research Bulletin, 2010, 83, 57-64.	3.0	3
93	Sex differences in the intensity of cross-sensitization between methylphenidate and amphetamine in adolescent rats. Physiology and Behavior, 2019, 202, 77-86.	2.1	3
94	Acute and chronic methylphenidate administration in intact and VTA-specific and nonspecific lesioned rats. Journal of Neural Transmission, 2019, 126, 173-182.	2.8	3
95	Glutamate and dopamine in the VTA participate differently in the acute and chronic effect of methylphenidate. Behavioural Brain Research, 2020, 380, 112390.	2.2	3
96	Locus Coeruleus Neuronal and Behavioral Activity Following Acute and Chronic Methylphenidate. Journal of Brain Sciences, 2015, 1, 24-42.	1.0	3
97	Cocaine Alters the Daily Activity Patterns of Adult SD Female Rats. Journal of Behavioral and Brain Science, 2014, 04, 523-534.	0.5	3
98	Acute and chronic psychostimulant treatment modulates the diurnal rhythm activity pattern of WKY female adolescent rats. Journal of Neural Transmission, 2014, 121, 457-468.	2.8	2
99	The Characteristics of Methylphenidate on Animal Behavior. Pharmaceutica Analytica Acta, 2015, 06, .	0.2	2
100	The Effect of Methylphenidate on the Ventral Tegmental Area in Adolescent and Adult Animals. , 2016, , 699-706.		2
101	The effect of environment on cross-sensitization between methylphenidate and amphetamine in female rats. Physiology and Behavior, 2022, 252, 113845.	2.1	2
102	Prefrontal cortex glutamate afferents are essential for acute and chronic effects of Ritalin. Annals of General Psychiatry, 2010, 9, .	2.7	0
103	Methylenedioxymethamphetamine (MDMA). , 2010, , 758-762.		0
104	Movement Disorder. , 2010, , 805-805.		0
105	Does Methylphenidate (MPD) Have the Potential to Become Drug of Abuse?. Biochemistry & Pharmacology: Open Access, 2015, 04, .	0.2	0
106	Prevention of Opioid Addiction. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 731-740.	0.2	0
107	The Characteristics of Acute and Chronic Methylphenidate, Dose, and Route on Female and Male Animal Behavior. , 2016, , 675-681.		0