Lorraine K Tyler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10735104/publications.pdf

Version: 2024-02-01

94 papers 10,329 citations

51 h-index 91 g-index

101 all docs

101 docs citations

times ranked

101

7028 citing authors

#	Article	IF	CITATIONS
1	The effects of age on restingâ€state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology, 2021, 58, e13714.	1.2	51
2	Decoding the Real-Time Neurobiological Properties of Incremental Semantic Interpretation. Cerebral Cortex, 2021, 31, 233-247.	1.6	6
3	Physical Activity Predicts Population-Level Age-Related Differences in Frontal White Matter. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 236-243.	1.7	22
4	Cognitive Diversity in a Healthy Aging Cohort: Cross-Domain Cognition in the Cam-CAN Project. Journal of Aging and Health, 2020, 32, 1029-1041.	0.9	15
5	Age-related reduction in motor adaptation: brain structural correlates and the role of explicit memory. Neurobiology of Aging, 2020, 90, 13-23.	1.5	42
6	Neural dynamics of semantic composition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21318-21327.	3.3	42
7	Perceptual and conceptual processing of visual objects across the adult lifespan. Scientific Reports, 2019, 9, 13771.	1.6	23
8	Strong and specific associations between cardiovascular risk factors and white matter micro- and macrostructure in healthy aging. Neurobiology of Aging, 2019, 74, 46-55.	1.5	38
9	Balancing Prediction and Sensory Input in Speech Comprehension: The Spatiotemporal Dynamics of Word Recognition in Context. Journal of Neuroscience, 2019, 39, 519-527.	1.7	20
10	Language-related domain-specific and domain-general systems in the human brain. Current Opinion in Behavioral Sciences, 2018, 21, 132-137.	2.0	71
11	Activity and Connectivity Differences Underlying Inhibitory Control Across the Adult Life Span. Journal of Neuroscience, 2018, 38, 7887-7900.	1.7	69
12	Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway. Scientific Reports, 2018, 8, 10636.	1.6	72
13	Oscillatory Dynamics of Perceptual to Conceptual Transformations in the Ventral Visual Pathway. Journal of Cognitive Neuroscience, 2018, 30, 1590-1605.	1.1	26
14	The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. NeuroImage, 2017, 144, 262-269.	2.1	487
15	Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity. Nature Communications, 2017, 8, 14743.	5.8	62
16	Age-Related Increases in Verbal Knowledge Are Not Associated With Word Finding Problems in the Cam-CAN Cohort: What You Know Won't Hurt You. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2017, 72, 100-106.	2.4	53
17	Decoding the Cortical Dynamics of Sound-Meaning Mapping. Journal of Neuroscience, 2017, 37, 1312-1319.	1.7	42
18	Robust Resilience of the Frontotemporal Syntax System to Aging. Journal of Neuroscience, 2016, 36, 5214-5227.	1.7	39

#	Article	IF	Citations
19	Obesity associated with increased brain age from midlife. Neurobiology of Aging, 2016, 47, 63-70.	1.5	181
20	Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing. Cognitive Science, 2016, 40, 325-350.	0.8	8
21	Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation. Journal of Neuroscience, 2016, 36, 3115-3126.	1.7	185
22	Idiosyncratic responding during movie-watching predicted by age differences in attentional control. Neurobiology of Aging, 2015, 36, 3045-3055.	1.5	74
23	Predicting the Time Course of Individual Objects with MEG. Cerebral Cortex, 2015, 25, 3602-3612.	1.6	106
24	The effect of ageing on f <scp>MRI</scp> : Correction for the confounding effects of vascular reactivity evaluated by joint f <scp>MRI</scp> and <scp>MEG</scp> in 335 adults. Human Brain Mapping, 2015, 36, 2248-2269.	1.9	169
25	Understanding What We See: How We Derive Meaning From Vision. Trends in Cognitive Sciences, 2015, 19, 677-687.	4.0	125
26	The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes. Neuropsychologia, 2015, 76, 192-207.	0.7	54
27	FromLanguage and Cognitive ProcessestoLanguage,Cognition and Neuroscience. Language, Cognition and Neuroscience, 2014, 29, 1-1.	0.7	3
28	Age-related sensitivity to task-related modulation of language-processing networks. Neuropsychologia, 2014, 63, 107-115.	0.7	51
29	The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurology, 2014, 14, 204.	0.8	430
30	Object-Specific Semantic Coding in Human Perirhinal Cortex. Journal of Neuroscience, 2014, 34, 4766-4775.	1.7	208
31	Language in the aging brain: The network dynamics of cognitive decline and preservation. Science, 2014, 346, 583-587.	6.0	217
32	From Perception to Conception: How Meaningful Objects Are Processed over Time. Cerebral Cortex, 2013, 23, 187-197.	1.6	117
33	Neurobiological Systems for Lexical Representation and Analysis in English. Journal of Cognitive Neuroscience, 2013, 25, 1678-1691.	1.1	49
34	Objects and Categories: Feature Statistics and Object Processing in the Ventral Stream. Journal of Cognitive Neuroscience, 2013, 25, 1723-1735.	1.1	105
35	Representational Similarity Analysis Reveals Commonalities and Differences in the Semantic Processing of Words and Objects. Journal of Neuroscience, 2013, 33, 18906-18916.	1.7	163
36	Syntactic Computations in the Language Network: Characterizing Dynamic Network Properties Using Representational Similarity Analysis. Frontiers in Psychology, 2013, 4, 271.	1.1	37

#	Article	IF	Citations
37	Medial perirhinal cortex disambiguates confusable objects. Brain, 2012, 135, 3757-3769.	3.7	83
38	Are the senses enough for sense? Early high-level feedback shapes our comprehension of multisensory objects. Frontiers in Integrative Neuroscience, 2012, 6, 82.	1.0	13
39	Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain, 2011, 134, 415-431.	3.7	207
40	Conceptual structure: Towards an integrated neurocognitive account. Language and Cognitive Processes, 2011, 26, 1368-1401.	2.3	66
41	Is left fronto-temporal connectivity essential for syntax? Effective connectivity, tractography and performance in left-hemisphere damaged patients. Neurolmage, 2011, 58, 656-664.	2.1	72
42	The functional organisation of the fronto-temporal language system: Evidence from syntactic and semantic ambiguity. Neuropsychologia, 2010, 48, 1324-1335.	0.7	113
43	Preserving Syntactic Processing across the Adult Life Span: The Modulation of the Frontotemporal Language System in the Context of Age-Related Atrophy. Cerebral Cortex, 2010, 20, 352-364.	1.6	185
44	Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?. Brain, 2010, 133, 3396-3408.	3.7	75
45	Crossmodal integration of object features: Voxel-based correlations in brain-damaged patients. Brain, 2009, 132, 671-683.	3.7	61
46	Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia, 2009, 47, 388-396.	0.7	294
47	The processing of English regular inflections: Phonological cues to morphological structure. Cognition, 2008, 109, 1-17.	1.1	41
48	Fronto-temporal brain systems supporting spoken language comprehension. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1037-1054.	1.8	158
49	Morphology, language and the brain: the decompositional substrate for language comprehension. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 823-836.	1.8	171
50	The conceptual structure account: A cognitive model of semantic memory and its neural instantiation. , 2007, , 265-301.		41
51	Differentiating Morphology, Form, and Meaning: Neural Correlates of Morphological Complexity. Journal of Cognitive Neuroscience, 2007, 19, 1464-1475.	1.1	83
52	New evidence for morphological errors in deep dyslexiaâ~†. Brain and Language, 2006, 97, 189-199.	0.8	24
53	Conceptual Structure Modulates Anteromedial Temporal Involvement in Processing Verbally Presented Object Properties. Cerebral Cortex, 2006, 17, 1066-1073.	1.6	31
54	Binding crossmodal object features in perirhinal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8239-8244.	3.3	218

#	Article	IF	Citations
55	Dissociating neuro-cognitive component processes: voxel-based correlational methodology. Neuropsychologia, 2005, 43, 771-778.	0.7	96
56	Temporal and frontal systems in speech comprehension: An fMRI study of past tense processing. Neuropsychologia, 2005, 43, 1963-1974.	0.7	137
57	Deficits for Semantics and the Irregular Past Tense: A Causal Relationship?. Journal of Cognitive Neuroscience, 2004, 16, 1159-1172.	1.1	38
58	The conceptual structure of cabbages and things. Brain and Language, 2003, 87, 84-85.	0.8	2
59	Capturing underlying differentiation in the human language system. Trends in Cognitive Sciences, 2003, 7, 62-63.	4.0	17
60	Dissociations in Processing Past Tense Morphology: Neuropathology and Behavioral Studies. Journal of Cognitive Neuroscience, 2002, 14, 79-94.	1.1	134
61	Activating meaning in time: The role of imageability and form-class. Language and Cognitive Processes, 2002, 17, 471-502.	2.3	35
62	Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia, 2002, 40, 54-75.	0.7	233
63	Phonology and neuropsychology of the English past tense. Neuropsychologia, 2002, 40, 1154-1166.	0.7	97
64	The limits of a localized account of conceptual knowledge: Reply to Kiefer and Spitzer. Trends in Cognitive Sciences, 2001, 5, 471.	4.0	1
65	Concepts and categories: What is the evidence for neural specialisation?. Behavioral and Brain Sciences, 2001, 24, 495-496.	0.4	2
66	Comprehension of long distance number agreement in probable Alzheimer's disease. Language and Cognitive Processes, 2001, 16, 35-63.	2.3	32
67	Past tense formation in Williams syndrome. Language and Cognitive Processes, 2001, 16, 143-176.	2.3	137
68	The interaction of meaning and sound in spoken word recognition. Psychonomic Bulletin and Review, 2000, 7, 320-326.	1.4	53
69	Susceptibility-Induced Loss of Signal: Comparing PET and fMRI on a Semantic Task. NeuroImage, 2000, 11, 589-600.	2.1	400
70	Morphological and semantic effects in visual word recognition: A time-course study. Language and Cognitive Processes, 2000, 15, 507-537.	2.3	399
71	Why Do Alzheimer Patients Have Difficulty with Pronouns? Working Memory, Semantics, and Reference in Comprehension and Production in Alzheimer's Disease. Brain and Language, 1999, 67, 202-227.	0.8	158
72	Linguistic dissociations in Williams syndrome: evaluating receptive syntax in on-line and off-line tasks. Neuropsychologia, 1998, 36, 343-351.	0.7	141

#	Article	lF	CITATIONS
73	Rules, representations, and the English past tense. Trends in Cognitive Sciences, 1998, 2, 428-435.	4.0	162
74	Sentence Comprehension Deficits in Alzheimer's Disease: A Comparison of Off-Line vs. On-Line Sentence Processing. Brain and Language, 1998, 64, 297-316.	0.8	99
75	â€Two Eyes of a See-through': Impaired and Intact Semantic Knowledge in a Case of Selective Deficit for Living Things. Neurocase, 1998, 4, 291-310.	0.2	137
76	Category-specific semantic deficits: The role of familiarity and property type reexamined Neuropsychology, 1998, 12, 367-379.	1.0	41
77	Functional Properties of Concepts: Studies of Normal and Brain-damaged Patients. Cognitive Neuropsychology, 1997, 14, 511-545.	0.4	117
78	The Gradual Deterioration of Syntax and Semantics in a Patient with Progressive Aphasia. Brain and Language, 1997, 56, 426-476.	0.8	34
79	Do Individuals with Williams Syndrome have Bizarre Semantics? Evidence for Lexical Organization Using an On-Line Task. Cortex, 1997, 33, 515-527.	1.1	67
80	Dissociating types of mental computation. Nature, 1997, 387, 592-594.	13.7	258
81	Accessing different types of lexical semantic information: Evidence from priming Journal of Experimental Psychology: Learning Memory and Cognition, 1995, 21, 863-883.	0.7	189
82	Dissociations of lexical function: Semantics, syntax, and morphology. Cognitive Neuropsychology, 1995, 12, 345-389.	0.4	29
83	Loss of semantic memory: implications for the modularity of mind. Cognitive Neuropsychology, 1994, 11, 505-542.	0.4	170
84	The processing of simple and complex words in an agrammatic patient: Evidence from priming. Neuropsychologia, 1994, 32, 1001-1013.	0.7	19
85	Morphology and meaning in the English mental lexicon Psychological Review, 1994, 101, 3-33.	2.7	796
86	Morphological Deficits in Aphasia: Problems of Representation, Access or Integration?., 1994, , 202-218.		0
87	The Distinction Between Implicit and Explicit Language Function: Evidence from Aphasia. , 1992, , 159-178.		12
88	Syntactic deficits and the construction of local phrases in spoken language comprehension. Cognitive Neuropsychology, 1989, 6, 333-355.	0.4	10
89	Spoken language comprehension in a fluent aphasic patient. Cognitive Neuropsychology, 1988, 5, 375-400.	0.4	33
90	Is gating an on-line task? Evidence from naming latency data. Perception & Psychophysics, 1985, 38, 217-222.	2.3	72

#	Article	IF	CITATIONS
91	Real-time comprehension processes in agrammatism: A case study. Brain and Language, 1985, 26, 259-275.	0.8	77
92	The structure of the initial cohort: Evidence from gating. Perception & Psychophysics, 1984, 36, 417-427.	2.3	110
93	Quantifying contextual contributions to word-recognition processes. Perception & Psychophysics, 1983, 34, 409-420.	2.3	139
94	The on-line effects of semantic context on syntactic processing. Journal of Verbal Learning and Verbal Behavior, 1977, 16, 683-692.	3.8	230