Deepaneeta Sarmah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10733828/publications.pdf

Version: 2024-02-01

28 papers 868 citations

16 h-index 28 g-index

28 all docs 28 docs citations

times ranked

28

1264 citing authors

#	Article	IF	CITATIONS
1	Glial Cells Response in Stroke. Cellular and Molecular Neurobiology, 2023, 43, 99-113.	3.3	6
2	Response to Letter to Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2022, 13, 359-361.	4.2	2
3	Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Reviews and Reports, 2022, 18, 821-838.	3.8	23
4	Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCÎ′/MMP9/AQP4-Mediated Pathway. Molecular Neurobiology, 2022, 59, 2758-2775.	4.0	14
5	Cerebroâ€renal interaction and stroke. European Journal of Neuroscience, 2021, 53, 1279-1299.	2.6	15
6	Nanotechnology in the diagnosis and treatment of stroke. Drug Discovery Today, 2021, 26, 585-592.	6.4	22
7	Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology, 2021, 162, 160-178.	4.4	12
8	Intra-arterial Stem Cell Therapy Diminishes Inflammasome Activation After Ischemic Stroke: a Possible Role of Acid Sensing Ion Channel 1a. Journal of Molecular Neuroscience, 2021, 71, 419-426.	2.3	13
9	Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein–protein interactions. Cell Biology and Toxicology, 2021, 37, 653-678.	5.3	14
10	Endovascular Stem Cell Therapy Post Stroke Rescues Neurons from Endoplasmic Reticulum Stress-Induced Apoptosis by Modulating Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling. ACS Chemical Neuroscience, 2021, 12, 3745-3759.	3 . 5	13
11	Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2020, 11, 1185-1202.	4.2	190
12	Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Current Topics in Medicinal Chemistry, 2020, 20, 1154-1168.	2.1	10
13	Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chemical Neuroscience, 2019, 10, 44-57.	3.5	22
14	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	3.8	64
15	Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. International Journal of Neuroscience, 2019, 129, 1039-1044.	1.6	24
16	Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2629-2646.	3.5	8
17	Interplay between Mitophagy and Inflammasomes in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2195-2208.	3.5	19
18	Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sciences, 2019, 216, 49-58.	4.3	37

#	ARTICLE	IF	CITATION
19	Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Translational Stroke Research, 2019, 10, 121-136.	4.2	37
20	Therapeutic spectrum of interferonâ€Î² in ischemic stroke. Journal of Neuroscience Research, 2019, 97, 116-127.	2.9	18
21	Noncoding RNAs in ischemic stroke: time to translate. Annals of the New York Academy of Sciences, 2018, 1421, 19-36.	3.8	41
22	Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chemical Neuroscience, 2018, 9, 421-430.	3.5	50
23	Mesenchymal Stem Cell Therapy in Ischemic Stroke: A Metaâ€analysis of Preclinical Studies. Clinical Pharmacology and Therapeutics, 2018, 103, 990-998.	4.7	45
24	Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Translational Stroke Research, 2018, 9, 356-374.	4.2	49
25	A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS Central Science, 2018, 4, 805-819.	11.3	35
26	Inflammasomes in stroke: a triggering role for acidâ€sensing ion channels. Annals of the New York Academy of Sciences, 2018, 1431, 14-24.	3.8	13
27	Exposure to hypoglycemia and risk of stroke. Annals of the New York Academy of Sciences, 2018, 1431, 25-34.	3.8	34
28	Stroke Management: An Emerging Role of Nanotechnology. Micromachines, 2017, 8, 262.	2.9	38