Steven W Kembel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/107317/publications.pdf

Version: 2024-02-01

82 papers 16,175 citations

43 h-index 82 g-index

94 all docs 94 docs citations 94 times ranked 19548 citing authors

#	Article	IF	Citations
1	Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26, 1463-1464.	4.1	4,517
2	The merging of community ecology and phylogenetic biology. Ecology Letters, 2009, 12, 693-715.	6.4	1,795
3	Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 2008, 24, 2098-2100.	4.1	1,502
4	A global metaâ€analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18, 1406-1419.	6.4	768
5	Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13715-13720.	7.1	457
6	Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance. PLoS Computational Biology, 2012, 8, e1002743.	3.2	400
7	Architectural design influences the diversity and structure of the built environment microbiome. ISME Journal, 2012, 6, 1469-1479.	9.8	386
8	Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters, 2009, 12, 949-960.	6.4	355
9	THE PHYLOGENETIC STRUCTURE OF A NEOTROPICAL FOREST TREE COMMUNITY. Ecology, 2006, 87, S86-S99.	3. 2	345
10	Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 2010, 13, 96-105.	6.4	340
11	Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature, 2017, 546, 145-147.	27.8	294
12	Does phylogenetic relatedness influence the strength of competition among vascular plants?. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 41-50.	2.7	278
13	Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air, 2014, 24, 41-48.	4.3	277
14	Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography, 2011, 34, 552-565.	4.5	265
15	Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change, 2013, 3, 63-67.	18.8	262
16	Climate, soil and plant functional types as drivers of global fineâ€root trait variation. Journal of Ecology, 2017, 105, 1182-1196.	4.0	234
17	Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome, 2016, 4, 27.	11.1	209
18	Plant Phenotypic Plasticity Belowground: A Phylogenetic Perspective on Root Foraging Tradeâ€Offs. American Naturalist, 2005, 166, 216-230.	2.1	205

#	Article	IF	Citations
19	Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2010, 12, 1293-1303.	3.8	203
20	Global marine bacterial diversity peaks at high latitudes in winter. ISME Journal, 2013, 7, 1669-1677.	9.8	195
21	Architectural Design Drives the Biogeography of Indoor Bacterial Communities. PLoS ONE, 2014, 9, e87093.	2.5	166
22	Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany, 2014, 92, 303-311.	1.0	165
23	Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. ELife, 2018, 7, .	6.0	140
24	Bacterial communities on classroom surfaces vary with human contact. Microbiome, 2014, 2, 7.	11.1	129
25	Drawing ecological inferences from coincident patterns of population―and community―level biodiversity. Molecular Ecology, 2014, 23, 2890-2901.	3.9	121
26	Improving the Scale and Precision of Hypotheses to Explain Root Foraging Ability. Annals of Botany, 2008, 101, 1295-1301.	2.9	111
27	A Floristic Study of the White-Sand Forests of Peru ¹ . Annals of the Missouri Botanical Garden, 2010, 97, 283-305.	1.3	110
28	Shoot, but not root, competition reduces community diversity in experimental mesocosms. Journal of Ecology, 2009, 97, 155-163.	4.0	104
29	Ecology in the age of <scp>DNA</scp> barcoding: the resource, the promise and the challenges ahead. Molecular Ecology Resources, 2014, 14, 221-232.	4.8	99
30	Paleotemperature Proxies from Leaf Fossils Reinterpreted in Light of Evolutionary History. PLoS ONE, 2010, 5, e15161.	2.5	95
31	Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities. PLoS ONE, 2011, 6, e19992.	2.5	94
32	In Situ Phylogenetic Structure and Diversity of Wild <i>Bradyrhizobium</i> Communities. Applied and Environmental Microbiology, 2009, 75, 4727-4735.	3.1	93
33	Differential genetic influences on competitive effect and response in Arabidopsis thaliana. Journal of Ecology, 2005, 93, 958-967.	4.0	91
34	Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ, 2016, 4, e2367.	2.0	85
35	The Phylogenetic Diversity of Metagenomes. PLoS ONE, 2011, 6, e23214.	2.5	83
36	Flowering phenology as a functional trait in a tallgrass prairie. New Phytologist, 2012, 193, 673-682.	7.3	83

#	Article	IF	CITATIONS
37	Evolution of the indoor biome. Trends in Ecology and Evolution, 2015, 30, 223-232.	8.7	75
38	PhylOTU: A High-Throughput Procedure Quantifies Microbial Community Diversity and Resolves Novel Taxa from Metagenomic Data. PLoS Computational Biology, 2011, 7, e1001061.	3.2	73
39	Ecophylogenetics Clarifies the Evolutionary Association between Mammals and Their Gut Microbiota. MBio, 2018, 9, .	4.1	67
40	Glial Cell-Derived Neurotrophic Factor Induces Enteric Neurogenesis and Improves Colon Structure and Function in Mouse Models of Hirschsprung Disease. Gastroenterology, 2020, 159, 1824-1838.e17.	1.3	63
41	Phylogenetic Diversity Theory Sheds Light on the Structure of Microbial Communities. PLoS Computational Biology, 2012, 8, e1002832.	3.2	56
42	Variation in the leaf and root microbiome of sugar maple ($\langle i \rangle$ Acer saccharum $\langle i \rangle$) at an elevational range limit. PeerJ, 2018, 6, e5293.	2.0	55
43	Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity. MSystems, 2017, 2, .	3.8	49
44	Making the Most of Trait-Based Approaches for Microbial Ecology. Trends in Microbiology, 2019, 27, 814-823.	7.7	49
45	Backbones of evolutionary history test biodiversity theory for microbes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8356-8361.	7.1	44
46	Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest. Microbiome, 2020, 8, 70.	11.1	39
47	Effect of local community phylogenetic structure on pollen limitation in an obligately insectâ€pollinated plant. American Journal of Botany, 2011, 98, 283-289.	1.7	37
48	Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia, 2011, 165, 1109-1117.	2.0	36
49	Diversification of <i>Ceanothus </i> (Rhamnaceae) in the California Floristic Province. International Journal of Plant Sciences, 2011, 172, 1137-1164.	1.3	36
50	Withinâ€stand spatial structure and relation of boreal canopy and understorey vegetation. Journal of Vegetation Science, 2006, 17, 783-790.	2.2	28
51	A taxonomic comparison of local habitat niches of tropical trees. Oecologia, 2013, 173, 1491-1498.	2.0	24
52	Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal gradient. Ecological Monographs, 2021, 91, e01443.	5.4	24
53	Canadian butterfly climate debt is significant and correlated with range size. Ecography, 2018, 41, 2005-2015.	4.5	23
54	Functional Diversity: An Epistemic Roadmap. BioScience, 2019, 69, 800-811.	4.9	23

#	Article	IF	CITATIONS
55	The prevalence of nonlinearity and detection of ecological breakpoints across a land use gradient in streams. Scientific Reports, 2019, 9, 3878.	3.3	20
56	Identifying the core seed bank of a complex boreal bacterial metacommunity. ISME Journal, 2017, 11, 2012-2021.	9.8	18
57	Short-term effects of cut-to-length versus full-tree harvesting on conifer regeneration in jack pine, mixedwood, and black spruce forests in Manitoba. Canadian Journal of Forest Research, 2004, 34, 1938-1945.	1.7	17
58	Low Light Availability Associated with American Beech Is the Main Factor for Reduced Sugar Maple Seedling Survival and Growth Rates in a Hardwood Forest of Southern Quebec. Forests, 2017, 8, 413.	2.1	17
59	Can sugar maple establish into the boreal forest? Insights from seedlings under various canopies in southern Quebec. Ecosphere, 2018, 9, e02022.	2.2	16
60	Gut microbiota-mediated Gene-Environment interaction in the TashT mouse model of Hirschsprung disease. Scientific Reports, 2019, 9, 492.	3.3	16
61	Bacterial microbiota similarity between predators and prey in a blue tit trophic network. ISME Journal, 2021, 15, 1098-1107.	9.8	16
62	Plantâ€bacteria associations are phylogenetically structured in the phyllosphere. Molecular Ecology, 2021, 30, 5572-5587.	3.9	15
63	Neonicotinoid Seed Treatments Have Significant Non-target Effects on Phyllosphere and Soil Bacterial Communities. Frontiers in Microbiology, 2020, 11, 619827.	3.5	15
64	Causes of pattern in plant communities where environmental change is rapid and species longevity is short. Journal of Vegetation Science, 2006, 17, 599.	2.2	15
65	Plant host identity and soil macronutrients explain little variation in sapling endophyte community composition: Is disturbance an alternative explanation?. Journal of Ecology, 2019, 107, 1876-1889.	4.0	14
66	Phylogenetic gradient analysis: environmental drivers of phylogenetic variation across ecological communities. Plant Ecology, 2015, 216, 709-724.	1.6	13
67	The Biogeography of Putative Microbial Antibiotic Production. PLoS ONE, 2015, 10, e0130659.	2.5	13
68	Short-term effects of cut-to-length versus full-tree harvesting on understorey plant communities and understorey-regeneration associations in Manitoba boreal forests. Forest Ecology and Management, 2008, 255, 1848-1858.	3.2	12
69	Estimating metacommunity extent using data on species abundances, environmental variation, and phylogenetic relationships across geographic space. Ecological Informatics, 2013, 13, 114-122.	5.2	12
70	Causes of pattern in plant communities where environmental change is rapid and species longevity is short. Journal of Vegetation Science, 2006, 17, 599-614.	2.2	9
71	Phylogenetic turnover along local environmental gradients in tropical forest communities. Oecologia, 2016, 182, 547-557.	2.0	9
72	Microsite conditions influence leaf litter decomposition in sugar maple bioclimatic domain of Quebec. Biogeochemistry, 2019, 145, 107-126.	3.5	8

#	Article	IF	CITATIONS
73	Shared mycorrhizae but distinct communities of other root-associated microbes on co-occurring native and invasive maples. PeerJ, 2019, 7, e7295.	2.0	8
74	Fine-Scale Adaptations to Environmental Variation and Growth Strategies Drive Phyllosphere <i>Methylobacterium</i> Diversity. MBio, 2022, 13, e0317521.	4.1	7
75	Regional variation drives differences in microbial communities associated with sugar maple across a latitudinal range. Ecology, 2022, 103, e3727.	3.2	7
76	Dominance of coniferous and broadleaved trees drives bacterial associations with boreal feather mosses. Environmental Microbiology, 2022, 24, 3517-3528.	3.8	7
77	Inconsistent effects of nitrogen canopy enrichment and soil warming on black spruce epiphytic phyllosphere bacterial communities, taxa, and functions. Canadian Journal of Forest Research, 2021, 51, 1199-1207.	1.7	6
78	Soils associated to different tree communities do not elicit predictable responses in lake bacterial community structure and function. FEMS Microbiology Ecology, 2018, 94, .	2.7	5
79	Microsatellite markers from <i>Ceanothus roderickii</i> (Rhamnaceae) using nextâ€generation sequencing technology. American Journal of Botany, 2012, 99, e127-30.	1.7	3
80	Transfer index, NetUniFrac and some useful shortest path-based distances for community analysis in sequence similarity networks. Bioinformatics, 2020, 36, 2740-2749.	4.1	2
81	Within-stand spatial structure and relation of boreal canopy and understorey vegetation. Journal of Vegetation Science, 2006, 17, 783.	2.2	1
82	Spruce budworm bacterial communities vary among sites and host tree species in a boreal landscape. Journal of Biogeography, 0, , .	3.0	0