
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1073140/publications.pdf Version: 2024-02-01

Ηιροςμι Ειποκλ

#	Article	IF	CITATIONS
1	Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Scientific Reports, 2014, 4, 5325.	3.3	115
2	Room Temperature Layer by Layer Growth of GaN on Atomically Flat ZnO. Japanese Journal of Applied Physics, 2004, 43, L53-L55.	1.5	76
3	Room temperature epitaxial growth of m-plane GaN on lattice-matched ZnO substrates. Applied Physics Letters, 2007, 90, 041908.	3.3	71
4	Polarity control of GaN grown on ZnO (0001 \hat{A}) surfaces. Applied Physics Letters, 2006, 88, 181907.	3.3	69
5	Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition. Journal of Applied Physics, 2006, 99, 123513.	2.5	61
6	Room-Temperature Epitaxial Growth of High Quality AlN on SiC by Pulsed Sputtering Deposition. Applied Physics Express, 2009, 2, 011003.	2.4	57
7	Electrical properties of Si-doped GaN prepared using pulsed sputtering. Applied Physics Letters, 2017, 110, .	3.3	56
8	High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering. APL Materials, 2016, 4, 086103.	5.1	55
9	Dramatic reduction in process temperature of InGaN-based light-emitting diodes by pulsed sputtering growth technique. Applied Physics Letters, 2014, 104, 051121.	3.3	45
10	Field-effect transistors based on cubic indium nitride. Scientific Reports, 2015, 4, 3951.	3.3	40
11	Growth of GaN on NdGaO3 substrates by pulsed laser deposition. Thin Solid Films, 2002, 407, 114-117.	1.8	38
12	Electron transport properties of degenerate <i>n</i> -type GaN prepared by pulsed sputtering. APL Materials, 2017, 5, .	5.1	34
13	Structural properties of GaN films grown on multilayer graphene films by pulsed sputtering. Applied Physics Express, 2014, 7, 085502.	2.4	30
14	Highly conductive Ge-doped GaN epitaxial layers prepared by pulsed sputtering. Applied Physics Express, 2017, 10, 101002.	2.4	29
15	Room temperature epitaxial growth of AlGaN on ZnO by pulsed laser deposition. Applied Physics Letters, 2006, 89, 111918.	3.3	27
16	Epitaxial growth of nonpolar AlN films on ZnO substrates using room temperature grown GaN buffer layers. Applied Physics Letters, 2007, 91, 081915.	3.3	25
17	Epitaxial growth mechanisms of AlN on SiC substrates at room temperature. Applied Physics Letters, 2007, 91, 151903.	3.3	22
18	Epitaxial growth of GaN on single-crystal Mo substrates using HfN buffer layers. Journal of Crystal Growth, 2009, 311, 1311-1315.	1.5	20

#	Article	IF	CITATIONS
19	InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature. Applied Physics Letters, 2016, 109, 032106.	3.3	20
20	Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils. Scientific Reports, 2017, 7, 2112.	3.3	19
21	Room-temperature epitaxial growth of AlN on atomically flat MgAl2O4 substrates. Applied Physics Letters, 2006, 89, 182104.	3.3	18
22	Structural properties of GaN grown on Zn-face ZnO at room temperature. Journal of Crystal Growth, 2007, 305, 70-73.	1.5	18
23	Wide range doping controllability of p-type GaN films prepared via pulsed sputtering. Applied Physics Letters, 2019, 114, .	3.3	18
24	Lowâ€ŧemperature growth of high quality AlN films on carbon face 6H‣iC. Physica Status Solidi - Rapid Research Letters, 2008, 2, 13-15.	2.4	17
25	Electron mobility of ultrathin InN on yttria-stabilized zirconia with two-dimensionally grown initial layers. Applied Physics Letters, 2013, 102, 022103.	3.3	17
26	N-polar InGaN-based LEDs fabricated on sapphire via pulsed sputtering. APL Materials, 2017, 5, .	5.1	17
27	Optical characteristics of highly conductive n-type GaN prepared by pulsed sputtering deposition. Scientific Reports, 2019, 9, 20242.	3.3	17
28	GaN heteroepitaxial growth on LiNbO3(0001) step substrates with AlN buffer layers. Physica Status Solidi A, 2005, 202, R145-R147.	1.7	16
29	Epitaxial growth of AlN on single crystal Mo substrates. Thin Solid Films, 2008, 516, 4809-4812.	1.8	16
30	Fabrication of InGaN thin-film transistors using pulsed sputtering deposition. Scientific Reports, 2016, 6, 29500.	3.3	15
31	Growth temperature dependence of structural properties of AlN films on ZnO (0001Â ⁻) substrates. Applied Physics Letters, 2007, 90, 141908.	3.3	14
32	Room-temperature epitaxial growth of high-qualitym-plane InGaN films on ZnO substrates. Physica Status Solidi - Rapid Research Letters, 2009, 3, 124-126.	2.4	14
33	Characteristics of unintentionally doped and lightly Si-doped GaN prepared via pulsed sputtering. AIP Advances, 2019, 9, .	1.3	14
34	Room temperature growth of semipolar AlN (1\$ ar 1 \$02) films on ZnO (1\$ ar 1 \$02) substrates by pulsed laser deposition. Physica Status Solidi - Rapid Research Letters, 2009, 3, 58-60.	2.4	13
35	Effect of growth stoichiometry on the structural properties of AlN films on thermally nitrided sapphire \$(11ar 20)\$. Physica Status Solidi - Rapid Research Letters, 2014, 8, 256-259.	2.4	13
36	Coherent epitaxial growth of superconducting NbN ultrathin films on AlN by sputtering. Applied Physics Express, 2020, 13, 061006.	2.4	13

#	Article	IF	CITATIONS
37	Fabrication and Characterization of AlN/InN Heterostructures. Applied Physics Express, 2009, 2, 011002.	2.4	12
38	Room-Temperature Epitaxial Growth of High-Quality m-Plane InAlN Films on Nearly Lattice-Matched ZnO Substrates. Japanese Journal of Applied Physics, 2010, 49, 070202.	1.5	12
39	Vertical p-type GaN Schottky barrier diodes with nearly ideal thermionic emission characteristics. Applied Physics Letters, 2021, 118, .	3.3	12
40	Generalized grazing-incidence-angle x-ray scattering analysis of quantum dots. Journal of Applied Physics, 2003, 93, 2034-2040.	2.5	11
41	Structural properties of semipolar AlxGa1â^'xN(\$1ar {1}03\$) films grown on ZnO substrates using room temperature epitaxial buffer layers. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2149-2152.	1.8	11
42	Characteristics of AlN Films Grown on Thermally-Nitrided Sapphire Substrates. Applied Physics Express, 2011, 4, 015501.	2.4	11
43	High-current-density indium nitride ultrathin-film transistors on glass substrates. Applied Physics Letters, 2016, 109, 142104.	3.3	10
44	Polarity Dependence of Structural and Electronic Properties of Al\$_{2}\$O\$_{3}\$/InN Interfaces. Applied Physics Express, 2011, 4, 091002.	2.4	9
45	Autonomous growth of NbN nanostructures on atomically flat AlN surfaces. Applied Physics Letters, 2020, 117, .	3.3	9
46	Structural Characteristics of GaN/InN Heterointerfaces Fabricated at Low Temperatures by Pulsed Laser Deposition. Applied Physics Express, 2010, 3, 021003.	2.4	8
47	Dependence on composition of the optical polarization properties of m-plane InxGa1â~'xN commensurately grown on ZnO. Applied Physics Letters, 2011, 99, 061912.	3.3	8
48	Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO. Scientific Reports, 2017, 7, 12820.	3.3	8
49	Heavily Si-doped pulsed sputtering deposited GaN for tunneling junction contacts in UV-A light emitting diodes. Applied Physics Letters, 2021, 118, .	3.3	8
50	Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels. Crystals, 2022, 12, 499.	2.2	8
51	Polarity control and growth mode of InN on yttriaâ€stabilized zirconia (111) surfaces. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2251-2254.	1.8	7
52	Epitaxial Growth of Thick Polar and Semipolar InN Films on Yttriaâ€Stabilized Zirconia Using Pulsed Sputtering Deposition. Physica Status Solidi (B): Basic Research, 2018, 255, 1700320.	1.5	7
53	Growth of Si-doped AlN on sapphire (0001) via pulsed sputtering. APL Materials, 2018, 6, .	5.1	7
54	Theoretical study of the initial stage of InN growth on cubic zirconia (111) substrates. Physica Status Solidi - Rapid Research Letters, 2013, 7, 207-210.	2.4	6

#	Article	IF	CITATIONS
55	Characteristics of AlN/Ni(111) Heterostructures and their Application to Epitaxial Growth of GaN. Japanese Journal of Applied Physics, 2006, 45, L396-L398.	1.5	5
56	Growth Orientation Control of Semipolar InN Films Using Yttria-Stabilized Zirconia Substrates. Japanese Journal of Applied Physics, 2010, 49, 080204.	1.5	5
57	Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO. Applied Physics Letters, 2013, 103, .	3.3	5
58	Low-temperature pulsed sputtering growth of InGaN multiple quantum wells for photovoltaic devices. Japanese Journal of Applied Physics, 2017, 56, 031002.	1.5	5
59	Combined infrared reflectance and Raman spectroscopy analysis of Si-doping limit of GaN. Applied Physics Letters, 2020, 117, 192103.	3.3	5
60	Structural characteristics of semipolar InN (112 <i>l</i>) films grown on yttria stabilized zirconia substrates. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2269-2271.	1.8	4
61	Improvement in the Crystalline Quality of Semipolar AlN(1ar102) Films by Using ZnO Substrates with Self-Organized Nanostripes. Applied Physics Express, 2010, 3, 041002.	2.4	4
62	Theoretical Investigation of the Polarity Determination for <i>c</i> -Plane InN Grown on Yttria-Stabilized Zirconia (111) Substrates with Yttrium Surface Segregation. Applied Physics Express, 2013, 6, 021002.	2.4	4
63	Ultrathin rock-salt type NbN films grown on atomically flat AlN/sapphire substrates. Journal of Crystal Growth, 2021, 572, 126269.	1.5	4
64	Characterization of GaN films grown on hafnium foils by pulsed sputtering deposition. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700244.	1.8	3
65	Optical polarization characteristics of <i>m</i> â€plane InGaN films coherently grown on ZnO substrates. Physica Status Solidi - Rapid Research Letters, 2010, 4, 188-190.	2.4	2
66	Epitaxial growth of In-rich InGaN on yttria-stabilized zirconia and its application to metal–insulator–semiconductor field-effect transistors. Journal of Applied Physics, 2016, 120, 085709.	2.5	2
67	AlN/InAlN thin-film transistors fabricated on glass substrates at room temperature. Scientific Reports, 2019, 9, 6254.	3.3	2
68	Pulsed sputtering growth of heavily Si-doped GaN (20 2̄1) for tunneling junction contacts on semipolar InGaN (20 2̄1) LEDs. Applied Physics Express, 2021, 14, 051011.	2.4	2
69	High Electron Mobility AlN on Sapphire (0001) with a Low Dislocation Density Prepared via Sputtering and Highâ€Temperature Annealing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100074.	1.8	2
70	Reduction of Twin Boundary in NbN Films Grown on Annealed AlN. Crystal Growth and Design, 2022, 22, 1720-1723.	3.0	2
71	Demonstration of enhanced optical polarization for improved deep ultraviolet light extraction in coherently grown semipolar Al0.83Ga0.17N/AlN on ZnO substrates. Applied Physics Letters, 2011, 99, 121906.	3.3	1
72	Epitaxial growth of semipolar InAlN films on yttria-stabilized zirconia. Physica Status Solidi (B): Basic Research, 2017, 254, 1700211.	1.5	1

#	Article	IF	CITATIONS
73	Growth of InN ultrathin films on AlN for the application to field-effect transistors. AIP Advances, 2020, 10, 125221.	1.3	1
74	Xâ€ray reciprocal space mapping study on semipolar InAlN films coherently grown on ZnO substrates. Physica Status Solidi - Rapid Research Letters, 2011, 5, 400-402.	2.4	0
75	Solidâ€phase epitaxy of InO <i>_x</i> N <i>_y</i> alloys via thermal oxidation of InN films on yttriaâ€stabilized zirconia. Physica Status Solidi - Rapid Research Letters, 2014, 8, 362-366.	2.4	Ο
76	Theoretical study of InN growth on Mn-stabilized zirconia (111) substrates. Thin Solid Films, 2014, 551, 110-113.	1.8	0
77	Fabrication of InGaAs Quantum Dots by SPEED Method and Its Photoluminescence Properties Hyomen Kagaku, 2000, 21, 107-113.	0.0	0
78	Feasibility of Fabricating Large-Area Inorganic Crystalline Semiconductor Devices. , 2016, , 249-275.		0