Yubai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10731088/publications.pdf

Version: 2024-02-01

		1040056	1125743	
13	421	9	13	
papers	citations	h-index	g-index	
13	13	13	593	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. ACS Applied Electronic Materials, 2019, 1, 1718-1734.	4.3	108
2	A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Applied Materials Today, 2019, 16, 482-492.	4.3	106
3	Scalable Production of Graphene Oxide Using a 3D-Printed Packed-Bed Electrochemical Reactor with a Boron-Doped Diamond Electrode. ACS Applied Nano Materials, 2019, 2, 867-878.	5.0	41
4	The role of electrolyte acid concentration in the electrochemical exfoliation of graphite: Mechanism and synthesis of electrochemical graphene oxide. Nano Materials Science, 2019, 1, 215-223.	8.8	35
5	Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes. Carbon, 2021, 177, 71-78.	10.3	34
6	Room temperature production of graphene oxide with thermally labile oxygen functional groups forÂimproved lithium ion battery fabrication and performance. Journal of Materials Chemistry A, 2019, 7, 9646-9655.	10.3	27
7	Scalable Spray Drying Production of Amorphous V ₂ O ₅ –EGO 2D Heterostructured Xerogels for Highâ€Rate and Highâ€Capacity Aqueous Zinc Ion Batteries. Small, 2022, 18, e2105761.	10.0	24
8	Influence of Carbon Content on Ceramic Injection Molding of Reactionâ€Bonded Silicon Carbide. International Journal of Applied Ceramic Technology, 2016, 13, 838-843.	2.1	16
9	Tungstenâ€Doped Nanocrystalline V ₆ O ₁₃ Nanoparticles as Lowâ€Cost and Highâ€Performance Electrodes for Energy Storage Devices. Energy Technology, 2019, 7, 1801041.	3.8	10
10	Graphene platelets enhanced pressureless-sintered B 4 C ceramics. Royal Society Open Science, 2018, 5, 171837.	2.4	8
11	Facile Synthesis of Boron-Doped Reduced Electrochemical Graphene Oxide for Sodium Ion Battery Anode. Jom, 2021, 73, 2531.	1.9	6
12	Fast and cost-effective room temperature synthesis of high quality graphene oxide with excellent structural intactness. Sustainable Materials and Technologies, 2020, 25, e00198.	3.3	4
13	Microwave-assisted sol–gel synthesis of neutron-absorbed nano-sized 10B-enriched B4C powders. Journal of Sol-Gel Science and Technology, 2016, 80, 683-689.	2.4	2