Svjetlana Lovric

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10729895/publications.pdf

Version: 2024-02-01

257450 454955 3,416 30 24 30 citations h-index g-index papers 31 31 31 4588 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. Journal of the American Society of Nephrology: JASN, 2021, 32, 580-596.	6.1	15
2	Longâ€ŧerm B cell depletion associates with regeneration of kidney function. Immunity, Inflammation and Disease, 2021, 9, 1479-1488.	2.7	5
3	Panel sequencing distinguishes monogenic forms of nephritis from nephrosis in children. Nephrology Dialysis Transplantation, 2019, 34, 474-485.	0.7	13
4	Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2019, 30, 201-215.	6.1	110
5	Analysis of 24 genes reveals a monogenic cause in 11.1% of cases with steroid-resistant nephrotic syndrome at a single center. Pediatric Nephrology, 2018, 33, 305-314.	1.7	30
6	Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 53-62.	4.5	170
7	Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. Journal of Clinical Investigation, 2018, 128, 4313-4328.	8.2	89
8	Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nature Communications, 2018, 9, 1960.	12.8	90
9	Spectrum of mutations in Chinese children with steroid-resistant nephrotic syndrome. Pediatric Nephrology, 2017, 32, 1181-1192.	1.7	81
10	Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nature Genetics, 2017, 49, 1529-1538.	21.4	164
11	Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 2017, 127, 912-928.	8.2	160
12	Advillin acts upstream of phospholipase C $\ddot{l}\mu 1$ in steroid-resistant nephrotic syndrome. Journal of Clinical Investigation, 2017, 127, 4257-4269.	8.2	39
13	FAT1 mutations cause a glomerulotubular nephropathy. Nature Communications, 2016, 7, 10822.	12.8	99
14	Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nature Genetics, 2016, 48, 457-465.	21.4	149
15	Genetic testing in steroid-resistant nephrotic syndrome: when and how?. Nephrology Dialysis Transplantation, 2016, 31, 1802-1813.	0.7	159
16	Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis. Journal of the American Society of Nephrology: JASN, 2015, 26, 2860-2870.	6.1	38
17	Defects of CRB2 Cause Steroid-Resistant Nephrotic Syndrome. American Journal of Human Genetics, 2015, 96, 153-161.	6.2	88
18	A Single-Gene Cause in 29.5% of Cases of Steroid-Resistant Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2015, 26, 1279-1289.	6.1	499

#	Article	IF	CITATIONS
19	KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. Journal of Clinical Investigation, 2015, 125, 2375-2384.	8.2	159
20	Rapid Detection of Monogenic Causes of Childhood-Onset Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1109-1116.	4.5	74
21	Mutations in EMP2 Cause Childhood-Onset Nephrotic Syndrome. American Journal of Human Genetics, 2014, 94, 884-890.	6.2	101
22	ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6. American Journal of Human Genetics, 2013, 93, 336-345.	6.2	183
23	ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. Journal of Clinical Investigation, 2013, 123, 5179-5189.	8.2	275
24	ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. Journal of Clinical Investigation, 2013, 123, 3243-3253.	8.2	196
25	Efficacy and Safety of Rituximab Treatment in Patients with Antineutrophil Cytoplasmic Antibody-associated Vasculitides: Results from a German Registry (GRAID). Journal of Rheumatology, 2012, 39, 2153-2156.	2.0	32
26	Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Research and Therapy, 2011, 13, R75.	3.5	170
27	Combination of everolimus with calcineurin inhibitor medication resulted in post-transplant haemolytic uraemic syndrome in lung transplant recipients-a case series. Nephrology Dialysis Transplantation, 2011, 26, 3032-3038.	0.7	18
28	Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vascular Health and Risk Management, $2010, 6, 1125$.	2.3	123
29	Removal of elevated circulating angiopoietin-2 by plasma exchange – A pilot study in critically ill patients with thrombotic microangiopathy and anti-glomerular basement membrane disease. Thrombosis and Haemostasis, 2010, 104, 1038-1043.	3.4	11
30	Rituximab as rescue therapy in anti-neutrophil cytoplasmic antibody-associated vasculitis: a single-centre experience with 15 patients. Nephrology Dialysis Transplantation, 2008, 24, 179-185.	0.7	76