List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10729244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of HLA-A, -B, -C, -DRB1 and -DQB1 polymorphisms in COVID-19 patients. Journal of Microbiology, Immunology and Infection, 2022, 55, 421-427.	1.5	15
2	CRC: A Darwinian model of cellular immunoselection. , 2022, , 529-541.		0
3	HLA class I loss in colorectal cancer: implications for immune escape and immunotherapy. Cellular and Molecular Immunology, 2021, 18, 556-565.	4.8	55
4	MHC heterogeneity and response of metastases to immunotherapy. Cancer and Metastasis Reviews, 2021, 40, 501-517.	2.7	12
5	Tumor Escape Phenotype in Bladder Cancer Is Associated with Loss of HLA Class I Expression, T-Cell Exclusion and Stromal Changes. International Journal of Molecular Sciences, 2021, 22, 7248.	1.8	11
6	Copy Neutral LOH Affecting the Entire Chromosome 6 Is a Frequent Mechanism of HLA Class I Alterations in Cancer. Cancers, 2021, 13, 5046.	1.7	12
7	Restoration of MHC-I on Tumor Cells by Fhit Transfection Promotes Immune Rejection and Acts as an Individualized Immunotherapeutic Vaccine. Cancers, 2020, 12, 1563.	1.7	12
8	Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression. Cancer Immunology, Immunotherapy, 2019, 68, 2015-2027.	2.0	33
9	Cancer immune escape: <scp>MHC</scp> expression in primary tumours versus metastases. Immunology, 2019, 158, 255-266.	2.0	102
10	MHC/HLA Class I Loss in Cancer Cells. Advances in Experimental Medicine and Biology, 2019, 1151, 15-78.	0.8	50
11	HLA Class-I Expression and Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2019, 1151, 79-90.	0.8	31
12	Introduction. Advances in Experimental Medicine and Biology, 2019, 1151, 1-14.	0.8	3
13	HLA Class-II Expression in Human Tumors. Advances in Experimental Medicine and Biology, 2019, 1151, 91-95.	0.8	4
14	A Combination of Positive Tumor HLA-I and Negative PD-L1 Expression Provides an Immune Rejection Mechanism in Bladder Cancer. Annals of Surgical Oncology, 2019, 26, 2631-2639.	0.7	11
15	The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Current Opinion in Immunology, 2018, 51, 123-132.	2.4	99
16	HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape. Oncotarget, 2018, 9, 4120-4133.	0.8	66
17	HLA class I alterations in breast carcinoma are associated with a high frequency of the loss of heterozygosity at chromosomes 6 and 15. Immunogenetics, 2018, 70, 647-659.	1.2	36
18	MHC Intratumoral Heterogeneity May Predict Cancer Progression and Response to Immunotherapy. Frontiers in Immunology, 2018, 9, 102.	2.2	25

#	Article	IF	CITATIONS
19	Genomic loss of HLA alleles may affect the clinical outcome in low-risk myelodysplastic syndrome patients. Oncotarget, 2018, 9, 36929-36944.	0.8	18
20	Rejection versus escape: the tumor MHC dilemma. Cancer Immunology, Immunotherapy, 2017, 66, 259-271.	2.0	115
21	The absence of HLA class I expression in nonâ€small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. International Journal of Cancer, 2017, 140, 888-899.	2.3	75
22	Upregulation of HLA Class I Expression on Tumor Cells by the Anti-EGFR Antibody Nimotuzumab. Frontiers in Pharmacology, 2017, 8, 595.	1.6	27
23	The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture. Vaccines, 2017, 5, 7.	2.1	62
24	Targetless T cells in cancer immunotherapy. , 2016, 4, 23.		26
25	Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. International Journal of Cancer, 2016, 138, 271-280.	2.3	35
26	The urgent need to recover MHC class I in cancers for effective immunotherapy. Current Opinion in Immunology, 2016, 39, 44-51.	2.4	464
27	Frequent HLA class I alterations in human prostate cancer: molecular mechanisms and clinical relevance. Cancer Immunology, Immunotherapy, 2016, 65, 47-59.	2.0	35
28	Colorectal Cancer Classification and Cell Heterogeneity: A Systems Oncology Approach. International Journal of Molecular Sciences, 2015, 16, 13610-13632.	1.8	47
29	Metastases in Immune-Mediated Dormancy: A New Opportunity for Targeting Cancer. Cancer Research, 2014, 74, 6750-6757.	0.4	66
30	A novel preclinical murine model of immune-mediated metastatic dormancy. OncoImmunology, 2014, 3, e29258.	2.1	2
31	Immune escape of cancer cells with beta2â€microglobulin loss over the course of metastatic melanoma. International Journal of Cancer, 2014, 134, 102-113.	2.3	129
32	T Lymphocytes Restrain Spontaneous Metastases in Permanent Dormancy. Cancer Research, 2014, 74, 1958-1968.	0.4	53
33	Immune Infiltrates Are Prognostic Factors in Localized Gastrointestinal Stromal Tumors. Cancer Research, 2013, 73, 3499-3510.	0.4	277
34	MHC Class I Antigens and the Tumor Microenvironment. , 2013, , 253-286.		0
35	MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis, 2012, 33, 687-693.	1.3	69
36	Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunology, Immunotherapy, 2012, 61, 1359-1371.	2.0	105

#	Article	IF	CITATIONS
37	Association between C13ORF31, NOD2, RIPK2 and TLR10 polymorphisms and urothelial bladder cancer. Human Immunology, 2012, 73, 668-672.	1.2	40
38	The tumour suppressor <i>Fhit</i> positively regulates MHC class I expression on cancer cells. Journal of Pathology, 2012, 227, 367-379.	2.1	36
39	Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferonâ€mediated rejection genes. International Journal of Cancer, 2012, 131, 387-395.	2.3	75
40	Genome-wide differential genetic profiling characterizes colorectal cancers with genetic instability and specific routes to HLA class I loss and immune escape. Cancer Immunology, Immunotherapy, 2012, 61, 803-816.	2.0	29
41	Leukocyte infiltrate in gastrointestinal adenocarcinomas is strongly associated with tumor microsatellite instability but not with tumor immunogenicity. Cancer Immunology, Immunotherapy, 2011, 60, 869-882.	2.0	19
42	Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunology, Immunotherapy, 2011, 60, 1257-1268.	2.0	32
43	Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics, 2011, 63, 65-71.	1.2	75
44	Bacillus Calmetteâ€Guerin immunotherapy of bladder cancer induces selection of human leukocyte antigen class lâ€deficient tumor cells. International Journal of Cancer, 2011, 129, 839-846.	2.3	52
45	Alterations of HLA class I expression in human melanoma xenografts in immunodeficient mice occur frequently and are associated with higher tumorigenicity. Cancer Immunology, Immunotherapy, 2010, 59, 13-26.	2.0	25
46	The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible "hard―lesions. Cancer Immunology, Immunotherapy, 2010, 59, 1601-1606.	2.0	82
47	Analysis of HLA–ABC locus-specific transcription in normal tissues. Immunogenetics, 2010, 62, 711-719.	1.2	33
48	"Hard―and "soft―lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy. International Journal of Cancer, 2010, 127, 249-256.	2.3	232
49	Impact of interleukin-18 polymorphisms-607 and -137 on clinical characteristics of renal cell carcinoma patients. Human Immunology, 2010, 71, 309-313.	1.2	27
50	"Hard―and "soft―lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy. , 2010, 127, 249.		1
51	HLA and melanoma: multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunology, Immunotherapy, 2009, 58, 1507-1515.	2.0	53
52	A polymorphism in the interleukin-10 promoter affects the course of disease in patients with clear-cell renal carcinoma. Human Immunology, 2009, 70, 60-64.	1.2	14
53	Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: Implications for tumor evasion of T and NK cells. Human Immunology, 2009, 70, 854-857.	1.2	45
54	Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics, 2008, 60, 439-447.	1.2	119

#	Article	IF	CITATIONS
55	Characterization of HLA class I altered phenotypes in a panel of human melanoma cell lines. Cancer Immunology, Immunotherapy, 2008, 57, 719-729.	2.0	43
56	Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunology, Immunotherapy, 2008, 57, 1727-1733.	2.0	56
57	Genetic polymorphisms of RANTES, IL1-A, MCP-1 and TNF-A genes in patients with prostate cancer. BMC Cancer, 2008, 8, 382.	1.1	59
58	Late pulmonary metastases of renal cell carcinoma immediately after post-transplantation immunosuppressive treatment: a case report. Journal of Medical Case Reports, 2008, 2, 111.	0.4	14
59	Chapter 7 IFN Inducibility of Major Histocompatibility Antigens in Tumors. Advances in Cancer Research, 2008, 101, 249-276.	1.9	84
60	HLA Class I Expression, Tumor Escape and Cancer Progression. Current Cancer Therapy Reviews, 2008, 4, 105-110.	0.2	3
61	Role of Altered Expression of HLA Class I Molecules in Cancer Progression. Advances in Experimental Medicine and Biology, 2007, 601, 123-131.	0.8	117
62	High incidence of CTLA-4 AA (CT60) polymorphism in renal cell cancer. Human Immunology, 2007, 68, 698-704.	1.2	83
63	MHC Class I Antigens and Immune Surveillance in Transformed Cells. International Review of Cytology, 2007, 256, 139-189.	6.2	128
64	Total loss of HLA class I expression on a melanoma cell line after growth in nude mice in absence of autologous antitumor immune response. International Journal of Cancer, 2007, 121, 2023-2030.	2.3	12
65	Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer, 2007, 7, 34.	1.1	74
66	Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunology, Immunotherapy, 2007, 56, 88-94.	2.0	50
67	HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunology, Immunotherapy, 2007, 56, 709-717.	2.0	78
68	LOH at 6p21.3 region and HLA class altered phenotypes in bladder carcinomas. Immunogenetics, 2006, 58, 503-510.	1.2	56
69	Coordinated downregulation of the antigen presentation machinery and HLA class I/β2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. International Journal of Cancer, 2005, 113, 605-610.	2.3	116
70	Involvement of the chaperone tapasin in HLA-B44 allelic losses in colorectal tumors. International Journal of Cancer, 2005, 113, 611-618.	2.3	22
71	High frequency of homozygosity of the HLA region in melanoma cell lines reveals a pattern compatible with extensive loss of heterozygosity. Cancer Immunology, Immunotherapy, 2005, 54, 141-148.	2.0	33
72	Expression of MHC class I, MHC class II, and cancer germline antigens in neuroblastoma. Cancer Immunology, Immunotherapy, 2005, 54, 400-406.	2.0	88

#	Article	IF	CITATIONS
73	Analysis of NK cells and chemokine receptors in tumor infiltrating CD4 T lymphocytes in human renal carcinomas. Cancer Immunology, Immunotherapy, 2005, 54, 858-866.	2.0	62
74	The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunology, Immunotherapy, 2004, 53, 904-10.	2.0	239
75	Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics, 2004, 56, 244-53.	1.2	77
76	Low frequency of HLA haplotype loss associated with loss of heterozygocity in chromosome region 6p21 in clear renal cell carcinomas. International Journal of Cancer, 2004, 109, 636-638.	2.3	27
77	Analysis of HLA expression in human tumor tissues. Cancer Immunology, Immunotherapy, 2003, 52, 1-9.	2.0	98
78	Analysis of HLA-E expression in human tumors. Immunogenetics, 2003, 54, 767-775.	1.2	143
79	Complete loss of HLA class I antigen expression on melanoma cells: A result of successive mutational events. International Journal of Cancer, 2003, 103, 759-767.	2.3	88
80	Multiple mechanisms are responsible for the alteration in the expression of HLA class I antigens in melanoma. International Journal of Cancer, 2003, 105, 432-433.	2.3	9
81	MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. International Journal of Cancer, 2003, 106, 521-527.	2.3	79
82	MHC class I antigens, immune surveillance, and tumor immune escape. Journal of Cellular Physiology, 2003, 195, 346-355.	2.0	422
83	High frequency of HLA-B44 allelic losses in human solid tumors. Human Immunology, 2003, 64, 941-950.	1.2	26
84	Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Cancer Immunology, Immunotherapy, 2002, 51, 389-396.	2.0	105
85	HLA class I antigen abnormalities and immune escape by malignant cells. Seminars in Cancer Biology, 2002, 12, 3-13.	4.3	233
86	Impaired surface antigen presentation in tumors: implications for T cell-based immunotherapy. Seminars in Cancer Biology, 2002, 12, 15-24.	4.3	31
87	MHC antigens and tumor escape from immune surveillance. Advances in Cancer Research, 2001, 83, 117-158.	1.9	263
88	Oxidative stress induces the expression of the major histocompatibility complex in murine tumor cells. Free Radical Research, 2001, 35, 119-128.	1.5	4
89	A nucleotide insertion in exon 4 is responsible for the absence of expression of an HLA-A*0301 allele in a prostate carcinoma cell line. Immunogenetics, 2001, 53, 606-610.	1.2	29
90	Protein-bound polysaccharide K and interleukin-2 regulate different nuclear transcription factors in the NKL human natural killer cell line. Cancer Immunology, Immunotherapy, 2001, 50, 191-198.	2.0	23

#	Article	IF	CITATIONS
91	Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. International Journal of Cancer, 2001, 91, 109-119.	2.3	78
92	Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2?-deoxycytidine treatment. International Journal of Cancer, 2001, 94, 243-251.	2.3	225
93	A mutation determining the loss of HLA-A2 antigen expression in a cervical carcinoma reveals novel splicing of human MHC class I classical transcripts in both tumoral and normal cells. Immunogenetics, 2000, 51, 1047-1052.	1.2	30
94	High frequency of altered HLA class I phenotypes in laryngeal carcinomas. Human Immunology, 2000, 61, 499-506.	1.2	43
95	Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Human Immunology, 2000, 61, 1001-1012.	1.2	58
96	The HLA crossroad in tumor immunology. Human Immunology, 2000, 61, 65-73.	1.2	129
97	Looking for HLA-G expression in human tumours. Journal of Reproductive Immunology, 1999, 43, 263-273.	0.8	13
98	Expression of HLA G in human tumors is not a frequent event. , 1999, 81, 512-518.		65
99	Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors. , 1999, 83, 91-97.		104
100	Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors. International Journal of Cancer, 1999, 83, 91-97.	2.3	3
101	In vivo and in vitro generation of a new altered HLA phenotype in melanoma-tumour-cell variants expressing a single HLA-class-I allele. , 1998, 75, 317-323.		31
102	In vivo and in vitro generation of a new altered HLA phenotype in melanoma-tumour-cell variants expressing a single HLA-class-I allele. , 1998, 75, 317.		1
103	Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Trends in Immunology, 1997, 18, 89-95.	7.5	708
104	High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Human Immunology, 1996, 50, 127-134.	1.2	126
105	HLA and cancer. Tissue Antigens, 1996, 47, 361-363.	1.0	13
106	Methylated CpG points identified withinMAGE-1 promoter are involved in gene repression. , 1996, 68, 464-470.		46
107	Hla Class I Antigens in Human Tumors. Advances in Cancer Research, 1995, 67, 155-195.	1.9	121
108	Differential MAGE-1 Gene Expression in Two Variants of an Erythroleukemic Cell Line (K562). Immunobiology, 1995, 194, 449-456.	0.8	5

#	Article	IF	CITATIONS
109	Upmodulation by estrogen of HLA class I expression in breast tumor cell lines. Immunogenetics, 1994, 39, 161-7.	1.2	19
110	Generation and control of metastasis in experimental tumor systems; inhibition of experimental metastases by a tilorone analogue. International Journal of Cancer, 1993, 54, 518-523.	2.3	13
111	Natural history of HLA expression during tumour development. Trends in Immunology, 1993, 14, 491-499.	7.5	432
112	HLA class I expression and HPVâ€16 sequences in premalignant and malignant lesions of the cervix. Tissue Antigens, 1993, 41, 65-71.	1.0	46
113	HLA molecules in basal cell carcinoma of the skin. Immunobiology, 1992, 185, 440-452.	0.8	25
114	Expression of α-tropomyosin during cardiac development in the chick embryo. The Anatomical Record, 1992, 234, 301-309.	2.3	6
115	HLA Class I and II Expression in Rhabdomyosarcomas. Immunobiology, 1991, 182, 440-448.	0.8	18
116	Heterogeneity of MHC-class-I antigens in clones of methylcholanthrene-induced tumors. Implications for local growth and metastasis. International Journal of Cancer, 1991, 47, 73-81.	2.3	27
117	Molecular analysis of MHC-class-I alterations in human tumor cell lines. International Journal of Cancer, 1991, 47, 123-130.	2.3	25
118	Can the HLA phenotype be used as a prognostic factor in breast carcinomas?. International Journal of Cancer, 1991, 47, 146-154.	2.3	50
119	K-ras mutations (codon 12) are not involved in down-regulation of mhc class-i genes in colon carcinomas. International Journal of Cancer, 1990, 46, 426-431.	2.3	17
120	Class II HLA Antigen Expression in Familial Polyposis Coli is Related to the Degree of Dysplasia. Immunobiology, 1990, 180, 138-148.	0.8	11
121	Phenotypic expression of histocompatibility antigens in human primary tumours and metastases. Clinical and Experimental Metastasis, 1989, 7, 213-226.	1.7	34
122	NK sensitivity and lung clearance of MHC-class-I-deficient cells within a heterogeneous fibrosarcoma. International Journal of Cancer, 1989, 44, 675-680.	2.3	40
123	The Biological Implications of the Abnormal Expression of Histocompatibility Antigens on Murine and Human Tumors. , 1987, , 623-639.		3
124	Tumour immunology: MHC antigens and malignancy. Nature, 1986, 322, 502-503.	13.7	106
125	H–2-like specificities of foreign haplotypes appearing on a mouse sarcoma after vaccinia virus infection. Nature, 1976, 259, 228-230	13.7	128
126	Further evidence for derepression of H–2 and Ia-like specificities of foreign haplotypes in mouse tumour cell lines. Nature, 1976, 261, 705-707.	13.7	140