Stephane Angers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1072906/publications.pdf

Version: 2024-02-01

41323 28275 14,490 108 49 105 citations h-index g-index papers 137 137 137 21912 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid On-Cell Selection of High-Performance Human Antibodies. ACS Central Science, 2022, 8, 102-109.	5.3	6
2	Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. Nano Letters, 2022, 22, 4774-4783.	4.5	13
3	Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. Nature Cancer, 2021, 2, 157-173.	5.7	147
4	Single-cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival. ELife, 2021, 10, .	2.8	45
5	Wnt signaling inhibition confers induced synthetic lethality to PARP inhibitors. EMBO Molecular Medicine, 2021, 13, e14002.	3.3	10
6	The RanBP2/RanGAP1-SUMO complex gates \hat{l}^2 -arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. Oncogene, 2021, 40, 2243-2257.	2.6	13
7	A Norrin/Wnt surrogate antibody stimulates endothelial cell barrier function and rescues retinopathy. EMBO Molecular Medicine, 2021, 13, e13977.	3.3	30
8	The F-box protein Bard (CG14317) targets the Smaug RNA-binding protein for destruction during the Drosophila maternal-to-zygotic transition. Genetics, 2021, , .	1.2	5
9	Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition. Cell Reports, 2020, 31, 107783.	2.9	35
10	Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nature Communications, 2020, 11, 3701.	5.8	128
11	Nanostructured Architectures Promote the Mesenchymal–Epithelial Transition for Invasive Cells. ACS Nano, 2020, 14, 5324-5336.	7.3	17
12	The RNA-Binding Protein Rasputin/G3BP Enhances the Stability and Translation of Its Target mRNAs. Cell Reports, 2020, 30, 3353-3367.e7.	2.9	33
13	Single-molecule dynamics of Dishevelled at the plasma membrane and Wnt pathway activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16690-16701.	3.3	42
14	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	13.5	79
15	IPO11 mediates \hat{I}^2 catenin nuclear import in a subset of colorectal cancers. Journal of Cell Biology, 2020, 219, .	2.3	27
16	Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Medicine, 2019, 11, 52.	3.6	127
17	High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nature Biomedical Engineering, 2019, 3, 796-805.	11.6	53
18	ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucleic Acids Research, 2019, 47, 2856-2870.	6. 5	20

#	Article	IF	CITATIONS
19	Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells. Cell Reports, 2019, 27, 971-986.e9.	2.9	139
20	Structure-guided design fine-tunes pharmacokinetics, tolerability, and antitumor profile of multispecific frizzled antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6812-6817.	3.3	23
21	Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes and Development, 2019, 33, 498-510.	2.7	74
22	Agonistâ€induced desensitisation of β ₃ â€adrenoceptors: Where, when, and how?. British Journal of Pharmacology, 2019, 176, 2539-2558.	2.7	26
23	STEM-21. INVESTIGATING DOT1L AS AN EPIGENETIC VULNERABILITY IN BRAIN TUMOR STEM CELLS. Neuro-Oncology, 2019, 21, vi238-vi238.	0.6	0
24	GENE-31. IDENTIFICATION OF CORE AND CONTEXT-SPECIFIC FITNESS GENES IN GLIOBLASTOMA STEM CELLS VIA GENOME-WIDE CRISPR-Cas9 SCREENS. Neuro-Oncology, 2019, 21, vi104-vi104.	0.6	0
25	Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell, 2019, 179, 1330-1341.e13.	13.5	206
26	Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Developmental Cell, 2019, 48, 167-183.e5.	3.1	39
27	Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. ELife, 2019, 8, .	2.8	67
28	A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nature Chemical Biology, 2018, 14, 582-590.	3.9	50
29	High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. Molecular Cell, 2018, 69, 517-532.e11.	4.5	583
30	Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction. Nano Letters, 2018, 18, 7188-7193.	4.5	60
31	A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs, 2018, 10, 1157-1167.	2.6	39
32	CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature, 2018, 559, 285-289.	13.7	297
33	Wnt signaling in development and tissue homeostasis. Development (Cambridge), 2018, 145, .	1.2	528
34	Structure-guided engineering fine-tunes pharmacokinetics, tolerability and anti-tumor profile of anti-frizzled antibody. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a297-a297.	0.0	0
35	Separating the Anti-Inflammatory and Diabetogenic Effects of Glucocorticoids Through LXRÎ ² Antagonism. Endocrinology, 2017, 158, 1034-1047.	1.4	15
36	Systematic protein–protein interaction mapping for clinically relevant human <scp>GPCR</scp> s. Molecular Systems Biology, 2017, 13, 918.	3.2	63

#	Article	IF	Citations
37	ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells. Cell Stem Cell, 2017, 21, 209-224.e7.	5.2	150
38	Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nature Medicine, 2017, 23, 60-68.	15.2	261
39	Abstract IA06: Leveraging genome-wide CRISPR screens and synthetic lethal interactions for novel cancer therapeutics. , 2017 , , .		0
40	Identification of Novel Smoothened Ligands Using Structure-Based Docking. PLoS ONE, 2016, 11, e0160365.	1.1	17
41	Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. Journal of Cell Science, 2016, 129, 3892-3902.	1.2	65
42	PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. Developmental Cell, 2016, 37, 311-325.	3.1	63
43	Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9304-9309.	3.3	55
44	Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic Plasticity. Journal of Biological Chemistry, 2016, 291, 17602-17615.	1.6	23
45	SAPCD2 Controls Spindle Orientation and Asymmetric Divisions by Negatively Regulating the Gαi-LGN-NuMA Ternary Complex. Developmental Cell, 2016, 36, 50-62.	3.1	31
46	Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature, 2016, 530, 340-343.	13.7	425
47	YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene, 2016, 35, 4256-4268.	2.6	32
48	Abstract PR03: High-resolution detection of fitness genes and genotype-specific cancer vulnerabilities with CRISPR-Cas9 screens. , $2016, \ldots$		0
49	The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity. PLoS ONE, 2015, 10, e0129226.	1.1	19
50	Ptch2 shares overlapping functions with Ptch1 in Smo regulation and limb development. Developmental Biology, 2015, 397, 191-202.	0.9	38
51	$G\hat{l}^2$ 4 \hat{l}^3 1 as a modulator of M3 muscarinic receptor signalling and novel roles of $G\hat{l}^2$ 1 subunits in the modulation of cellular signalling. Cellular Signalling, 2015, 27, 1597-1608.	1.7	18
52	Stepping stone: a cytohesin adaptor for membrane cytoskeleton restraint in the syncytial Drosophila embryo. Molecular Biology of the Cell, 2015, 26, 711-725.	0.9	9
53	Ca2+/Calmodulin-dependent protein Kinase II interacts with group I Metabotropic Glutamate and facilitates Receptor Endocytosis and ERK1/2 signaling: role of β-Amyloid. Molecular Brain, 2015, 8, 21.	1.3	36
54	BioID-based Identification of Skp Cullin F-box (SCF) \hat{i}^2 -TrCP1/2 E3 Ligase Substrates*. Molecular and Cellular Proteomics, 2015, 14, 1781-1795.	2.5	148

#	Article	IF	Citations
55	A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion. Current Biology, 2015, 25, 2701-2708.	1.8	34
56	High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015, 163, 1515-1526.	13.5	1,339
57	Tandem Affinity Purification to Identify Cytosolic and Nuclear $G\hat{l}^2\hat{l}^3$ -Interacting Proteins. Methods in Molecular Biology, 2015, 1234, 161-184.	0.4	5
58	Ubiquitination and activation of a Rab GTPase promoted by a \hat{l}^2 2-Adrenergic Receptor/HACE1 complex. Journal of Cell Science, 2014, 127, 111-23.	1.2	36
59	Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic \hat{l}^2 Cells. Molecular and Cellular Proteomics, 2014, 13, 3049-3062.	2.5	48
60	The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling. Science Signaling, 2014, 7, ra117.	1.6	44
61	New insights in the regulation of Rab GTPases by G protein-coupled receptors. Small GTPases, 2014, 5, e983872.	0.7	5
62	Evasion of p53 and G2/M checkpoints are characteristic of Hh-driven basal cell carcinoma. Oncogene, 2014, 33, 2674-2680.	2.6	19
63	The Pseudomonas syringae Type III Effector HopF2 Suppresses Arabidopsis Stomatal Immunity. PLoS ONE, 2014, 9, e114921.	1.1	57
64	A Novel Assay for Measurement of Membraneâ€Protein Surface Expression using a βâ€lactamase Reporter. Traffic, 2013, 14, 778-784.	1.3	22
65	Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling. Journal of Receptor and Signal Transduction Research, 2013, 33, 177-183.	1.3	9
66	The Human PDZome: A Gateway to PSD95-Disc Large-Zonula Occludens (PDZ)-mediated Functions. Molecular and Cellular Proteomics, 2013, 12, 2587-2603.	2.5	59
67	Novel, Gel-free Proteomics Approach Identifies RNF5 and JAMP as Modulators of GPCR Stability. Molecular Endocrinology, 2013, 27, 1245-1266.	3.7	30
68	Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/ \hat{l}^2 -catenin-dependent cell fate decisions during vertebrate development. Development (Cambridge), 2013, 140, 1807-1818.	1.2	93
69	Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/ \hat{l}^2 -catenin-dependent cell fate decisions during vertebrate development. Development (Cambridge), 2013, 140, 2245-2245.	1.2	1
70	A Bacterial Acetyltransferase Destroys Plant Microtubule Networks and Blocks Secretion. PLoS Pathogens, 2012, 8, e1002523.	2.1	178
71	KIF14 negatively regulates Rap1a–Radil signaling during breast cancer progression. Journal of Cell Biology, 2012, 199, 951-967.	2.3	64
72	A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression. Oncogene, 2012, 31, 3696-3708.	2.6	109

#	Article	IF	Citations
73	Mink1 Regulates \hat{I}^2 -Catenin-Independent Wnt Signaling via Prickle Phosphorylation. Molecular and Cellular Biology, 2012, 32, 173-185.	1.1	43
74	Radil controls neutrophil adhesion and motility through \hat{l}^2 2-integrin activation. Molecular Biology of the Cell, 2012, 23, 4751-4765.	0.9	23
75	Inhibition of Tankyrases Induces Axin Stabilization and Blocks Wnt Signalling in Breast Cancer Cells. PLoS ONE, 2012, 7, e48670.	1.1	126
76	Tandem Affinity Purification and Identification of Heterotrimeric G Protein-Associated Proteins. Methods in Molecular Biology, 2011, 756, 357-370.	0.4	7
77	Gli Proteins in Development and Disease. Annual Review of Cell and Developmental Biology, 2011, 27, 513-537.	4.0	603
78	Calcium-sensing Receptor Modulates Cell Adhesion and Migration via Integrins. Journal of Biological Chemistry, 2011, 286, 40922-40933.	1.6	59
79	The Ubiquitin-Specific Protease USP34 Regulates Axin Stability and Wnt/ \hat{l}^2 -Catenin Signaling. Molecular and Cellular Biology, 2011, 31, 2053-2065.	1.1	128
80	G Protein $\hat{I}^2\hat{I}^3$ Subunits Regulate Cell Adhesion through Rap1a and Its Effector Radil. Journal of Biological Chemistry, 2010, 285, 6538-6551.	1.6	45
81	Oligomeric Size of the M2 Muscarinic Receptor in Live Cells as Determined by Quantitative Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2010, 285, 16723-16738.	1.6	63
82	Modulation of the \hat{I}^2 -Catenin Signaling Pathway by the Dishevelled-Associated Protein Hipk1. PLoS ONE, 2009, 4, e4310.	1.1	32
83	Glutamate Transporter Coupling to Na,K-ATPase. Journal of Neuroscience, 2009, 29, 8143-8155.	1.7	284
84	YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes and Development, 2009, 23, 2729-2741.	2.7	332
85	Oligomeric Size of the M2 Muscarinic Receptor in the Plasma Membrane of Live Cells as Determined by Quantitative FRET. Biophysical Journal, 2009, 96, 169a.	0.2	0
86	Proximal events in Wnt signal transduction. Nature Reviews Molecular Cell Biology, 2009, 10, 468-477.	16.1	982
87	New Regulators of Wnt \hat{I}^2 -Catenin Signaling Revealed by Integrative Molecular Screening. Science Signaling, 2008, 1, ra12.	1.6	135
88	Proteomic Analyses of Protein Complexes in the Wnt Pathway. Methods in Molecular Biology, 2008, 468, 223-230.	0.4	5
89	Wilms Tumor Suppressor WTX Negatively Regulates WNT/Â-Catenin Signaling. Science, 2007, 316, 1043-1046.	6.0	379
90	Recovery of Oligomers and Cooperativity When Monomers of the M2 Muscarinic Cholinergic Receptor Are Reconstituted into Phospholipid Vesicles. Biochemistry, 2007, 46, 7907-7927.	1.2	38

#	Article	IF	Citations
91	An aplysia dopamine1-like receptor: molecular and functional characterization. Journal of Neurochemistry, 2006, 96, 414-427.	2.1	26
92	The KLHL12–Cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation. Nature Cell Biology, 2006, 8, 348-357.	4.6	346
93	Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature, 2006, 443, 590-593.	13.7	580
94	Homodimerization of the \hat{I}^2 2-Adrenergic Receptor as a Prerequisite for Cell Surface Targeting. Journal of Biological Chemistry, 2004, 279, 33390-33397.	1.6	262
95	\hat{A} -Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11406-11411.	3.3	482
96	Monitoring of Ligand-independent Dimerization and Ligand-induced Conformational Changes of Melatonin Receptors in Living Cells by Bioluminescence Resonance Energy Transfer. Journal of Biological Chemistry, 2002, 277, 21522-21528.	1.6	277
97	Quantitative Assessment of \hat{l}^21 - and \hat{l}^22 -Adrenergic Receptor Homo- and Heterodimerization by Bioluminescence Resonance Energy Transfer. Journal of Biological Chemistry, 2002, 277, 44925-44931.	1.6	434
98	Constitutive Agonist-independent CCR5 Oligomerization and Antibody-mediated Clustering Occurring at Physiological Levels of Receptors. Journal of Biological Chemistry, 2002, 277, 34666-34673.	1.6	183
99	DIMERIZATION: An Emerging Concept for G Protein–Coupled Receptor Ontogeny and Function. Annual Review of Pharmacology and Toxicology, 2002, 42, 409-435.	4.2	553
100	THE BRET2/ARRESTIN ASSAY IN STABLE RECOMBINANT CELLS: A PLATFORM TO SCREEN FOR COMPOUNDS THAT INTERACT WITH G PROTEIN-COUPLED RECEPTORS (GPCRS)*. Journal of Receptor and Signal Transduction Research, 2002, 22, 533-541.	1.3	112
101	Functional characterization of a novel serotonin receptor (5-HTap2) expressed in the CNS of Aplysia californica. Journal of Neurochemistry, 2002, 80, 335-345.	2.1	46
102	Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sciences, 2001, 68, 2243-2250.	2.0	62
103	Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3684-3689.	3 . 3	467
104	Reply: beyond receptor dimerization. Trends in Pharmacological Sciences, 2000, 21, 326.	4.0	5
105	Functional Significance of Oligomerization of G-protein-coupled Receptors. Trends in Endocrinology and Metabolism, 2000, 11, 163-168.	3.1	108
106	Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. Journal of Clinical Investigation, 2000, 105, 887-895.	3.9	502
107	Î ² 2-Adrenergic Receptor Down-regulation. Journal of Biological Chemistry, 1999, 274, 28900-28908.	1.6	83
108	The Functional Genomic Circuitry of Human Glioblastoma Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0