
Yoshinori Iizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1072752/publications.pdf Version: 2024-02-01

YOSHINOPILIZIIKA

#	Article	IF	CITATIONS
1	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	27.8	565
2	State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Science Advances, 2017, 3, e1600446.	10.3	86
3	Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML. Cryosphere, 2011, 5, 1057-1081.	3.9	77
4	Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nature Communications, 2018, 9, 1476.	12.8	74
5	Asynchrony between Antarctic temperature and CO2 associated with obliquity over the past 720,000 years. Nature Communications, 2018, 9, 961.	12.8	51
6	Effect of accumulation rate on water stable isotopes of nearâ€surface snow in inland Antarctica. Journal of Geophysical Research D: Atmospheres, 2014, 119, 274-283.	3.3	42
7	Symmetric Stretching Vibration of CH ₄ in Clathrate Hydrate Structures. ChemPhysChem, 2010, 11, 3070-3073.	2.1	40
8	A relationship between ion balance and the chemical compounds of salt inclusions found in the Greenland Ice Core Project and Dome Fuji ice cores. Journal of Geophysical Research, 2008, 113, .	3.3	36
9	NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet. Cryosphere, 2018, 12, 635-655.	3.9	36
10	Ratios of Mg2+/Na+ in snowpack and an ice core at Austfonna ice cap, Svalbard, as an indicator of seasonal melting. Journal of Glaciology, 2002, 48, 452-460.	2.2	34
11	Dissociation Behavior of C ₂ H ₆ Hydrate at Temperatures below the Ice Point: Melting to Liquid Water Followed by Ice Nucleation. Journal of Physical Chemistry A, 2011, 115, 8889-8894.	2.5	32
12	Sulphate–climate coupling over the past 300,000 years in inland Antarctica. Nature, 2012, 490, 81-84.	27.8	32
13	The rates of sea salt sulfatization in the atmosphere and surface snow of inland Antarctica. Journal of Geophysical Research, 2012, 117, .	3.3	25
14	SO42â^'minimum in summer snow layer at Dome Fuji, Antarctica, and the probable mechanism. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	24
15	Na ₂ SO ₄ and MgSO ₄ salts during the Holocene period derived by high-resolution depth analysis of a Dome Fuji ice core. Journal of Glaciology, 2006, 52, 58-64.	2.2	24
16	lsotopic evidence for acidity-driven enhancement of sulfate formation after SO ₂ emission control. Science Advances, 2021, 7, .	10.3	24
17	Antarctic sea ice extent during the Holocene reconstructed from inland ice core evidence. Journal of Geophysical Research, 2008, 113, .	3.3	23
18	Constituent elements of insoluble and non-volatile particles during the Last Glacial Maximum exhibited in the Dome Fuji (Antarctica) ice core. Journal of Glaciology, 2009, 55, 552-562.	2.2	23

Yoshinori lizuka

#	Article	IF	CITATIONS
19	The chemical forms of water-soluble microparticles preserved in the Antarctic ice sheet during Termination I. Journal of Glaciology, 2011, 57, 1027-1032.	2.2	23
20	Densification of layered firn in the ice sheet at Dome Fuji, Antarctica. Journal of Glaciology, 2016, 62, 103-123.	2.2	23
21	A 60ÂYear Record of Atmospheric Aerosol Depositions Preserved in a Highâ€Accumulation Dome Ice Core, Southeast Greenland. Journal of Geophysical Research D: Atmospheres, 2018, 123, 574-589.	3.3	23
22	Seasonal‣cale Dating of a Shallow Ice Core From Greenland Using Oxygen Isotope Matching Between Data and Simulation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,873.	3.3	21
23	Reduced marine phytoplankton sulphur emissions in the Southern Ocean during the past seven glacials. Nature Communications, 2019, 10, 3247.	12.8	20
24	Inconsistent relationships between major ions and water stable isotopes in Antarctic snow under different accumulation environments. Polar Science, 2016, 10, 1-10.	1.2	18
25	Glaciological and meteorological observations at the SE-Dome site, southeastern Greenland Ice Sheet. Bulletin of Glaciological Research, 2016, 34, 1-10.	1.0	18
26	Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 2009, 55, 777-783.	2.2	17
27	Magnesium methanesulfonate salt found in the Dome Fuji (Antarctica) ice core. Journal of Glaciology, 2010, 56, 837-842.	2.2	17
28	A Firn Densification Process in the High Accumulation Dome of Southeastern Greenland. Arctic, Antarctic, and Alpine Research, 2017, 49, 13-27.	1.1	17
29	Stratigraphic analysis of Dome Fuji Antarctic ice core using an optical scanner. Annals of Glaciology, 2004, 39, 467-472.	1.4	16
30	Meridianiite detected in ice. Journal of Glaciology, 2009, 55, 117-122.	2.2	16
31	A Technique for Measuring Microparticles in Polar Ice Using Micro-Raman Spectroscopy. International Journal of Spectroscopy, 2010, 2010, 1-7.	1.6	16
32	Rapidly changing glaciers, ocean and coastal environments, and their impact on human society in the Qaanaaq region, northwestern Greenland. Polar Science, 2021, 27, 100632.	1.2	15
33	Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9789-9813.	3.3	13
34	Sulfur isotopic composition of surface snow along a latitudinal transect in East Antarctica. Geophysical Research Letters, 2016, 43, 5878-5885.	4.0	13
35	Detection of the sul2–strA–strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. Journal of Global Antimicrobial Resistance, 2019, 17, 72-78.	2.2	13
36	Sulphate and chloride aerosols during Holocene and last glacial periods preserved in the Talos Dome Ice Core, a peripheral region of Antarctica. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 20197.	1.6	12

Yoshinori lizuka

#	Article	IF	CITATIONS
37	lon concentrations in ice wedges: An innovative approach to reconstruct past climate variability. Earth and Planetary Science Letters, 2019, 515, 58-66.	4.4	12
38	Increasing dust emission from ice free terrain in southeastern Greenland since 2000. Polar Science, 2021, 27, 100599.	1.2	12
39	Potassium alum and aluminum sulfate micro-inclusions in polar ice from Dome Fuji, East Antarctica. Polar Science, 2014, 8, 1-9.	1.2	11
40	High-resolution 129 I bomb peak profile in an ice core from SE-Dome site, Greenland. Journal of Environmental Radioactivity, 2018, 184-185, 14-21.	1.7	11
41	Distribution of sea salt components in snow cover along the traverse route from the coast to Dome Fuji station 1000 km inland at east Dronning Maud Land, Antarctica. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 407-411.	1.6	11
42	Seasonal variations in the major chemical species of snow at the South East Dome in Greenland. Polar Science, 2016, 10, 36-42.	1.2	9
43	Distribution of sea salt components in snow cover along the traverse route from the coast to Dome Fuji station 1000 km inland at east Dronning Maud Land, Antarctica. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 407.	1.6	9
44	Field activities at the SIGMA-A site, northwestern Greenland Ice Sheet, 2017ï¼^2017å¹´ã,ºãƒªãƒ¼ãƒ³ãƒ©ãƒ³ä Glaciological Research, 2018, 36, 15-22.	ăf‰æ°∙床 I.O	åŒ <u>-</u> è¥;éƒ SI
45	Formation processes of basal ice at Hamna Glacier, Sôya Coast, East Antarctica, inferred by detailed co-isotopic analyses. Journal of Glaciology, 2001, 47, 223-231.	2.2	8
46	High-time-resolution profiles of soluble ions in the last glacial period of a Dome Fuji (Antarctica) deep ice core. Annals of Glaciology, 2004, 39, 452-456.	1.4	8
47	Chemical compositions of sulfate and chloride salts over the last termination reconstructed from the Dome Fuji ice core, inland Antarctica. Journal of Geophysical Research D: Atmospheres, 2014, 119, 14,045.	3.3	8
48	Physicochemical properties of bottom ice from Dome Fuji, inland East Antarctica. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1230-1250.	2.8	7
49	Very old firn air linked to strong density layering at Styx Glacier, coastal Victoria Land, East Antarctica. Cryosphere, 2019, 13, 2407-2419.	3.9	7
50	Assessment for paleoclimatic utility of biomass burning tracers in SE-Dome ice core, Greenland. Atmospheric Environment, 2019, 196, 86-94.	4.1	7
51	Reconstruction of Sea Ice Concentration in Northern Baffin Bay Using Deuterium Excess in a Coastal Ice Core From the Northwestern Greenland Ice Sheet. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031668.	3.3	7
52	Spatial distributions of soluble salts in surface snow of East Antarctica. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 29285.	1.6	6
53	Compositions of Dust and Sea Salts in the Dome C and Dome Fuji Ice Cores From Last Glacial Maximum to Early Holocene Based on Ice‧ublimation and Singleâ€Particle Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032208.	3.3	6
54	Pure rotational Raman spectroscopy applied to N ₂ /O ₂ analysis of air bubbles in polar firn. Journal of Glaciology, 2021, 67, 903-908.	2.2	5

Yoshinori lizuka

#	Article	IF	CITATIONS
55	Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica). Cryosphere, 2021, 15, 4807-4822.	3.9	5
56	Physically Based Summer Temperature Reconstruction From Melt Layers in Ice Cores. Earth and Space Science, 2021, 8, e2020EA001590.	2.6	4
57	Overview of the chemical composition and characteristics of Na ⁺ and Cl [–] distributions in shallow samples from Antarctic ice core DF01 (Dome Fuji) drilled in 2001. Geochemical Journal, 2017, 51, 293-298.	1.0	4
58	Evidence of past migration of the ice divide between the Shirase and Sôya drainage basins derived from chemical characteristics of the marginal ice in the Sôya drainage basin, East Antarctica. Journal of Glaciology, 2010, 56, 395-404.	2.2	3
59	Mineral and Sea-Salt Aerosol Fluxes over the Last 340 kyr Reconstructed from the Total Concentration of Al and Na in the Dome Fuji Ice Core. Atmospheric and Climate Sciences, 2013, 03, 186-192.	0.3	3
60	Gypsum formation from calcite in the atmosphere recorded in aerosol particles transported and trapped in Greenland ice core sample is a signature of secular change of SO2 emission in East Asia. Atmospheric Environment, 2022, 278, 119061.	4.1	3
61	Re-distribution of chemical compositions in the snowpack at the dome of Austfonna ice cap, Svalbard Journal of the Japanese Society of Snow and Ice, 2000, 62, 245-254.	0.1	2
62	Ice Core Drilling and the Related Observations at SE-Dome site, southeastern Greenland Ice Sheet. Bulletin of Glaciological Research, 2021, 39, 1-12.	1.0	1
63	Soluble salts in deserts as a source of sulfate aerosols in an Antarctic ice core during the last glacial period. Earth and Planetary Science Letters, 2022, 578, 117299.	4.4	1
64	Measurements of beryllium isotopes in ice wedges in Alaska. Nuclear Instruments & Methods in Physics Research B, 2019, 459, 64-70.	1.4	0
65	Studies on Atmosphere, Snow/Ice, and Glacial Microbes on Greenland Ice Sheet by SIGMA and relevant projects. Journal of the Japanese Society of Snow and Ice, 2021, 83, 169-191.	0.1	О