
Gregory P Nordin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1072740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D-printed microchip electrophoresis device containing spiral electrodes for integrated capacitively coupled contactless conductivity detection. Analytical and Bioanalytical Chemistry, 2022, 414, 545-550.	3.7	17
2	3D printed mounts for microdroplet resonators. Optics Express, 2022, 30, 1599.	3.4	3
3	Immunoaffinity monoliths for multiplexed extraction of preterm birth biomarkers from human blood serum in 3D printed microfluidic devices. Analyst, The, 2022, 147, 734-743.	3.5	13
4	Label-Free Profiling of up to 200 Single-Cell Proteomes per Day Using a Dual-Column Nanoflow Liquid Chromatography Platform. Analytical Chemistry, 2022, 94, 6017-6025.	6.5	39
5	3D printed microfluidic device for automated, pressure-driven, valve-injected microchip electrophoresis of preterm birth biomarkers. Mikrochimica Acta, 2022, 189, 204.	5.0	14
6	High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation. Polymers, 2022, 14, 2537.	4.5	10
7	Photonic Tuning of Silicon Ring Resonators Using an Automated Microfluidic Mixer. , 2021, , .		0
8	3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers. Micromachines, 2021, 12, 91.	2.9	19
9	Automated photonic tuning of silicon microring resonators using a 3D-printed microfluidic mixer. OSA Continuum, 2021, 4, 2075.	1.8	0
10	Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nature Communications, 2021, 12, 5509.	12.8	70
11	3D Printed Mounts for Microdroplet Resonators. , 2021, , .		0
12	3D Printed Microfluidics. Annual Review of Analytical Chemistry, 2020, 13, 45-65.	5.4	212
13	3D Printed Microfluidic Devices for Solid-Phase Extraction and On-Chip Fluorescent Labeling of Preterm Birth Risk Biomarkers. Analytical Chemistry, 2020, 92, 12322-12329.	6.5	30
14	Selfâ€ S ustaining 3D Thin Liquid Films in Ambient Environments. Advanced Materials Interfaces, 2020, 7, 1901887.	3.7	2
15	Biocompatible PEGDA Resin for 3D Printing. ACS Applied Bio Materials, 2020, 3, 2239-2244.	4.6	79
16	Use of Machine Learning with Temporal Photoluminescence Signals from CdTe Quantum Dots for Temperature Measurement in Microfluidic Devices. ACS Applied Nano Materials, 2020, 3, 4045-4053.	5.0	24
17	3D printed selectable dilution mixer pumps. Biomicrofluidics, 2019, 13, 014106.	2.4	31
18	3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers. Analytical Chemistry, 2019, 91, 7418-7425.	6.5	60

GREGORY P NORDIN

#	Article	IF	CITATIONS
19	3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers. Analytical and Bioanalytical Chemistry, 2019, 411, 5405-5413.	3.7	48
20	3D printing for lab-on-a-chip devices with 20 μm channels. , 2019, , .		2
21	3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab on A Chip, 2018, 18, 639-647.	6.0	59
22	3D Printed Microfluidic Features Using Dose Control in X, Y, and Z Dimensions. Micromachines, 2018, 9, 326.	2.9	38
23	Design and characterization of a package-less hybrid PDMS-CMOS-FR4 contact-imaging system for microfluidic integration. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1.	0.9	1
24	Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Analytical and Bioanalytical Chemistry, 2017, 409, 4311-4319.	3.7	101
25	Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab on A Chip, 2017, 17, 2899-2909.	6.0	306
26	High density 3D printed microfluidic valves, pumps, and multiplexers. Lab on A Chip, 2016, 16, 2450-2458.	6.0	202
27	Optical approach to resin formulation for 3D printed microfluidics. RSC Advances, 2015, 5, 106621-106632.	3.6	234
28	3D printed microfluidic devices with integrated valves. Biomicrofluidics, 2015, 9, 016501.	2.4	221
29	Microfluidic reflow pumps. Biomicrofluidics, 2015, 9, 044104.	2.4	3
30	Microfluidic valves made from polymerized polyethylene glycol diacrylate. Sensors and Actuators B: Chemical, 2014, 191, 438-444.	7.8	36
31	Weak Adsorption-Induced Surface Stress for Streptavidin Binding to Biotin Tethered to Silicon Microcantilever Arrays. IEEE Sensors Journal, 2013, 13, 959-968.	4.7	6
32	Single-Monomer Formulation of Polymerized Polyethylene Glycol Diacrylate as a Nonadsorptive Material for Microfluidics. Analytical Chemistry, 2011, 83, 6418-6425.	6.5	60
33	Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics. Lab on A Chip, 2011, 11, 2088.	6.0	27
34	Microcantilever array sensors with integrated PDMS microfluidics. , 2011, , .		0
35	Sensitivity enhancement of differential splitter-based transduction for photonic microcantilever arrays. Nanotechnology, 2010, 21, 155501.	2.6	11
36	In-plane all-photonic transduction with differential splitter using double-step rib waveguide for photonic microcantilever arrays. Optics Express, 2009, 17, 20012.	3.4	12

#	Article	IF	CITATIONS
37	Fabrication of compact polymer waveguide devices using air-trench bends and splitters. , 2008, , .		0
38	Ultracompact AWG Using Air-Trench Bends With Perfluorocyclobutyl Polymer Waveguides. Journal of Lightwave Technology, 2008, 26, 3062-3070.	4.6	7
39	In-plane photonic transduction of silicon-on-insulator microcantilevers. Optics Express, 2008, 16, 12114.	3.4	36