Kari Laasonen

List of Publications by Citations

Source: https://exaly.com/author-pdf/10727299/kari-laasonen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	4,702	31	51
papers	citations	h-index	g-index
51	5,000	5.3	5.29
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
51	Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. <i>Physical Review B</i> , 1993 , 47, 10142-10153	3.3	1181
50	Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of H3O+ and OH- Ions in Water. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 5749-5752		493
49	Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. <i>Physical Review B</i> , 1991 , 43, 6796-6799	3.3	382
48	Ab initio molecular dynamics for d-electron systems: Liquid copper at 1500 K. <i>Physical Review Letters</i> , 1992 , 69, 1982-1985	7.4	333
47	Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4535-8	16.4	238
46	Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2017 , 7, 3121-3130	13.1	216
45	Ab initio studies on high pressure phases of ice. <i>Physical Review Letters</i> , 1992 , 69, 462-465	7·4	154
44	Ab initio studies on the structural and dynamical properties of ice. <i>Physical Review B</i> , 1993 , 47, 4863-48	73 .3	149
43	Competition between Icosahedral Motifs in AgCu, AgNi, and AgCo Nanoalloys: A Combined Atomistic DFT Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 26405-26413	3.8	110
42	Ab initio study of gas-phase sulphuric acid hydrates containing 1 to 3 water molecules. <i>Journal of Chemical Physics</i> , 1998 , 108, 1031-1039	3.9	110
41	A density functional study on water-sulfuric acid-ammonia clusters and implications for atmospheric cluster formation. <i>Journal of Geophysical Research</i> , 2007 , 112,		102
40	Oxygen molecule dissociation on the Al(111) surface. <i>Physical Review Letters</i> , 2000 , 84, 705-8	7.4	99
39	Ab Initio Molecular Dynamics Study of Hydrochloric Acid in Water. <i>Journal of the American Chemical Society</i> , 1994 , 116, 11620-11621	16.4	80
38	Ab initio study of O2 precursor states on the Pd(111) surface. <i>Journal of Chemical Physics</i> , 2001 , 115, 2297-2302	3.9	70
37	Two Sulfuric Acids in Small Water Clusters. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 8648-8658	2.8	68
36	Nuclear magnetic shielding and quadrupole coupling tensors in liquid water: a combined molecular dynamics simulation and quantum chemical study. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11093-102	16.4	57
35	Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5216-5222	13	55

CO and NO adsorption and co-adsorption on the Pd(1 1 1) surface. Surface Science, 2001, 489, 72-82	1.8	53
The torsional potential of perfluoro n-alkanes: A density functional study. <i>Journal of Chemical Physics</i> , 1996 , 104, 3692-3700	3.9	48
Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. <i>ACS Catalysis</i> , 2017 , 7, 8033-8041	13.1	46
Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 25882-25892	3.8	46
Structural and Spectral Properties of Aqueous Hydrogen Fluoride Studied Using ab Initio Molecular Dynamics. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 11315-11322	3.4	41
Density functional complexation study of metal ions with (amino) polycarboxylic acid ligands. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 3382-3393	3.6	37
CO dissociation and CO+O reactions on a nanosized iron cluster. <i>Nano Research</i> , 2009 , 2, 660-670	10	36
Partially and fully deprotonated sulfuric acid in H2SO4(H2O)n (n=69) clusters. <i>Chemical Physics Letters</i> , 2004 , 390, 307-313	2.5	35
Reliable potential for small sulfuric acidwater clusters. <i>Chemical Physics</i> , 2003 , 287, 7-19	2.3	35
Ab initio molecular dynamics study of dilute hydrofluoric acid. <i>Molecular Physics</i> , 1996 , 88, 135-142	1.7	35
Charge distribution and Fermi level in bimetallic nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 2924-31	3.6	34
Structural dynamics of protonated methane and acetylene. <i>Physical Review Letters</i> , 1995 , 74, 876-879	7.4	34
Ab Initio Electrochemistry: Exploring the Hydrogen Evolution Reaction on Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 16166-16178	3.8	32
Experimental and computational studies of nitrogen doped Degussa P25 TiO2: application to visible-light driven photo-oxidation of As(III). <i>Catalysis Science and Technology</i> , 2012 , 2, 784	5.5	32
Coadsorption of CO and NO on the Pd(111) surface: combined ab initio and Monte Carlo study. <i>Physical Review Letters</i> , 2001 , 86, 5942-5	7.4	28
Theoretical Insight into the Hydrogen Evolution Activity of Open-Ended Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3956-60	6.4	25
Structure and dynamics of concentrated hydrochloric acid solutions. A first principles molecular dynamics study. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 555-565	3.6	25
Structure of CAl12. Journal of Chemical Physics, 1995, 103, 8075-8080	3.9	25
	Physics, 1996, 104, 3692-3700 Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 8033-8041 Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene. Journal of Physical Chemistry C, 2018, 122, 25882-25892 Structural and Spectral Properties of Aqueous Hydrogen Fluoride Studied Using ab Initio Molecular Dynamics. Journal of Physical Chemistry B, 2002, 106, 11315-11322 Density functional complexation study of metal ions with (amino) polycarboxylic acid ligands. Physical Chemistry Chemical Physics, 2003, 5, 3382-3393 CO dissociation and CO+O reactions on a nanosized iron cluster. Nano Research, 2009, 2, 660-670 Partially and fully deprotonated sulfuric acid in H2SO4(H2O)n (n=6B) clusters. Chemical Physics Letters, 2004, 390, 307-313 Reliable potential for small sulfuric acidiwater clusters. Chemical Physics, 2003, 287, 7-19 Ab initio molecular dynamics study of dilute hydrofluoric acid. Molecular Physics, 1996, 88, 135-142 Charge distribution and Fermi level in bimetallic nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 2924-31 Structural dynamics of protonated methane and acetylene. Physical Review Letters, 1995, 74, 876-879 Ab Initio Electrochemistry: Exploring the Hydrogen Evolution Reaction on Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 16166-16178 Experimental and computational studies of nitrogen doped Degussa P25 TiO2: application to Visible-Light driven photo-oxidation of As(III). Catalysis Science and Technology, 2012, 2, 784 Coadsorption of CO and NO on the Pd(1111) surface: combined ab initio and Monte Carlo study. Physical Review Letters, 2001, 86, 5942-5 Theoretical Insight into the Hydrogen Evolution Activity of Open-Ended Carbon Nanotubes. Journal of Physical Chemistry Letters, 2015, 6, 3956-60 Structure and dynamics of concentrated hydrochloric acid solutions. A first principles molecular dynamics study. Physical Chemistry C	Physics, 1996, 104, 3692-3700 Functionalized Carbon Nanotubes with Ni(ii) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 8033-8041 Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene. Journal of Physical Chemistry C, 2018, 122, 25882-25892 Structural and Spectral Properties of Aqueous Hydrogen Fluoride Studied Using ab Initio Molecular Dynamics. Journal of Physical Chemistry B, 2002, 106, 11315-11322 Density functional complexation study of metal ions with (amino) polycarboxylic acid ligands. Physical Chemistry Chemical Physics, 2003, 5, 3382-3393 CO dissociation and CO+O reactions on a nanosized iron cluster. Nano Research, 2009, 2, 660-670 Partially and fully deprotonated sulfuric acid in H2SO4(H2O)n (n=6B) clusters. Chemical Physics Letters, 2004, 390, 307-313 Reliable potential for small sulfuric acidiwater clusters. Chemical Physics, 2003, 287, 7-19 2.3 Ab initio molecular dynamics study of dilute hydrofluoric acid. Molecular Physics, 1996, 88, 135-142 Charge distribution and Fermi level in bimetallic nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 2924-31 Structural dynamics of protonated methane and acetylene. Physical Review Letters, 1995, 74, 876-879 7.4 Ab Initio Electrochemistry: Exploring the Hydrogen Evolution Reaction on Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 16166-16178 Experimental and computational studies of nitrogen doped Degussa P25 TiO2: application to visible-light driven photo-oxidation of As(III). Catalysis Science and Technology, 2012, 2, 784 Coadsorption of CO and NO on the Pd(111) surface: combined ab initio and Monte Carlo study. Physical Chemistry Letters, 2016, 6, 5942-5 Theoretical Insight into the Hydrogen Evolution Activity of Open-Ended Carbon Nanotubes. Journal of Physical Chemistry Chemical Physics, 2004, 6, 555-565

16	Revisiting the Volmer-Heyrovsk[mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 10536-10549	3.6	21
15	FeINI Nanoparticles: A Multiscale First-Principles Study to Predict Geometry, Structure, and Catalytic Activity. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1667-1674	3.8	17
14	Theoretical Study of the Hydrolysis of Pentameric Aluminum Complexes. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 993-1007	6.4	17
13	Density functional studies of the hydrolysis of aluminum (chloro)hydroxide in water with CPMD and COSMO. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 10873-80	2.8	17
12	The molecular and magnetic structure of carbon-enclosed and partially covered Fe55 particles. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3648-60	3.6	15
11	CO Disproportionation on a Nanosized Iron Cluster. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 12939-1	29,482	13
10	Experimental and Computational Investigation of Hydrogen Evolution Reaction Mechanism on Nitrogen Functionalized Carbon Nanotubes. <i>ChemCatChem</i> , 2018 , 10, 3872-3882	5.2	11
9	Hydrogen Evolution Reaction on the Single-Shell Carbon-Encapsulated Iron Nanoparticle: A Density Functional Theory Insight. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 13569-13577	3.8	10
8	Coupling Surface Coverage and Electrostatic Effects on the Interfacial Adlayer Water Structure of Hydrogenated Single-Crystal Platinum Electrodes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 13706-137	7₹2 ⁸	10
7	Ab initio molecular dynamics study of a mixture of HF(aq) and HCl(aq). <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12699-706	3.4	8
6	Coadsorption of CO and O2 on Pd(1 1 1). Chemical Physics, 2005, 314, 19-24	2.3	7
5	Mechanism study of floating catalyst CVD synthesis of SWCNTs. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2708-2712	1.3	6
4	Designing of low Pt electrocatalyst through immobilization on metal@C support for efficient hydrogen evolution reaction in acidic media. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 896, 115076	4.1	4
3	Computational exploration of Fe55@C240-catalyzed Fischer-Tropsch synthesis. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 2741-2753	3.6	2
2	Synthesis, structure, and complexation properties of hydroxybenzyl analogs of diethylenetriaminepentaacetic acid. <i>Journal of Coordination Chemistry</i> , 2010 , 63, 2026-2041	1.6	