List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/107259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 2009, 152, 195-206.	12.7	195
2	Simultaneous preconcentrations of Co2+, Cr6+, Hg2+ and Pb2+ ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES. Food Chemistry, 2017, 215, 447-453.	8.2	81
3	Preconcentration of metal ions using microbacteria. Mikrochimica Acta, 2013, 180, 719-739.	5.0	53
4	Biosorption of Heavy Metals (Cd ²⁺ , Cu ²⁺ , Co ²⁺ , and) Tj ETQq0 0 0 rgBT amylolyticus: Equilibrium and Kinetic Studies. Bioremediation Journal, 2013, 17, 86-96.	/Overlock 2.0	10 Tf 50 627 53
5	Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis. World Journal of Microbiology and Biotechnology, 2012, 28, 155-163.	3.6	45
6	The equilibrium and kinetics studies of flurbiprofen adsorption onto tetrabutylammonium montmorillonite (TBAM). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 335, 189-193.	4.7	43
7	Magnetic solid phase extractions of Co(II) and Hg(II) by using magnetized C. micaceus from water and food samples. Food Chemistry, 2019, 271, 232-238.	8.2	40
8	Î ³ -Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube for magnetic solid phase extractions and determinations of Sudan dyes and Para Red in food samples. Food Chemistry, 2018, 242, 533-537.	8.2	39
9	Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of uranium (VI) prior to its spectrophotometric determination. Mikrochimica Acta, 2012, 178, 389-397.	5.0	36
10	Î ³ -Fe 2 O 3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application. Journal of Magnetism and Magnetic Materials, 2016, 401, 949-955.	2.3	36
11	Preconcentration of cadmium and nickel using the bioadsorbent Geobacillus thermoleovorans subsp. stromboliensis immobilized on Amberlite XAD-4. Mikrochimica Acta, 2010, 169, 79-85.	5.0	35
12	Bacillus sp. immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of thorium prior to UV-vis spectrometry determination. Mikrochimica Acta, 2010, 171, 275-281.	5.0	34
13	Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 73, 84-88.	2.9	32
14	Preconcentrations and determinations of copper, nickel and lead in baby food samples employing Coprinus silvaticus immobilized multi-walled carbon nanotube as solid phase sorbent. Food Chemistry, 2019, 276, 174-179.	8.2	32
15	A new magnetized thermophilic bacteria to preconcentrate uranium and thorium from environmental samples through magnetic solid-phase extraction. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113315.	2.8	29
16	Pleurotus eryngii immobilized Amberlite XAD-16 as a solid-phase biosorbent for preconcentrations of Cd2+ and Co2+ and their determination by ICP-OES. Talanta, 2012, 99, 502-506.	5.5	28
17	Preconcentrations of Ni(II) and Pb(II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles. Food Chemistry, 2021, 336, 127675.	8.2	23
18	Boletus edulis loaded with γ-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co(II) and Sn(II) prior to their determination by ICP-OES. Mikrochimica Acta, 2018, 185, 73.	5.0	22

#	Article	IF	CITATIONS
19	A magnetized fungal solid-phase extractor for the preconcentrations of uranium(VI) and thorium(IV) before their quantitation by ICP-OES. Mikrochimica Acta, 2019, 186, 355.	5.0	22
20	Biosorption of chlorophenoxy acid herbicides from aqueous solution by using low-cost agricultural wastes. Desalination and Water Treatment, 2015, 56, 1898-1907.	1.0	21
21	Thermophilic Geobacillus galactosidasius sp. nov. loaded Î ³ -Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd. Bioresource Technology, 2016, 201, 269-275.	9.6	21
22	Resistance, bioaccumulation and solid phase extraction of uranium (VI) by Bacillus vallismortis and its UV–vis spectrophotometric determination. Journal of Environmental Radioactivity, 2017, 171, 217-225.	1.7	21
23	Tolerance and bioaccumulation of U(VI) by Bacillus mojavensis and its solid phase preconcentration by Bacillus mojavensis immobilized multiwalled carbon nanotube. Journal of Environmental Management, 2017, 187, 490-496.	7.8	21
24	Preconcentrations of Ni(II) and Co(II) by using immobilized thermophilic Geobacillus stearothermophilus SO-20 before ICP-OES determinations. Food Chemistry, 2018, 266, 126-132.	8.2	20
25	Application of magnetized fungal solid phase extractor with Fe2O3 nanoparticle for determination and preconcentration of Co(II) and Hg(II) from natural water samples. Microchemical Journal, 2018, 143, 198-204.	4.5	20
26	<i>In vitro</i> biological activities and fatty acid profiles of <i>Pistacia terebinthus</i> fruits and <i>Pistacia khinjuk</i> seeds. Natural Product Research, 2015, 29, 444-446.	1.8	18
27	Solid Phase Extraction Based on the Use of Agaricus arvensis as a Fungal Biomass for the Peconcentrations of Pb and Al Prior to Their Determination in Vegetables by ICP-OES. Atomic Spectroscopy, 2013, 34, 78-88.	1.2	18
28	Fullerene C ₆₀ functionalized γ-Fe ₂ O ₃ magnetic nanoparticle: Synthesis, characterization, and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 298-304.	2.8	17
29	A Novel Biosorbent for Preconcentrations of Co(II) and Hg(II) in Real Samples. Scientific Reports, 2020, 10, 455.	3.3	17
30	Off-line determination of trace silver in water samples and standard reference materials by cloud point extraction–atomic absorption spectrometry. Proceedings of the Estonian Academy of Sciences, 2009, 58, 190.	1.5	16
31	Trace level determination of beryllium in natural and flavored mineral waters after pre-concentration using activated carbon. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 455-460.	2.3	16
32	Fe ₃ O ₄ @SiO ₂ @ <i>Bacillus pumilis</i> : magnetised solid phase bio-extractor for preconcentration of Pb(II) and Cu(II) from water samples. International Journal of Environmental Analytical Chemistry, 2019, 99, 1112-1122.	3.3	16
33	Resistance and bioaccumulation of Cd2+, Cu2+, Co2+ and Mn2+ by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus. Annals of Microbiology, 2013, 63, 1379-1385.	2.6	14
34	In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 89, 14-19.	2.9	14
35	Selective preconcentration of Lanthanum(III) by <i>Coriolus versicolor</i> i>immobilised on Amberlite XAD-4 and its determination by ICP-OES. International Journal of Environmental Analytical Chemistry, 2014, 94, 533-545.	3.3	14
36	Preconcentrations of Cu (II) and Mn (II) by magnetic solid-phase extraction on Bacillus cereus loaded γ-Fe2O3 nanomaterials. Environmental Research, 2022, 209, 112766.	7.5	14

#	Article	IF	CITATIONS
37	Biosorption of 2,4â€d, 2,4â€DP, and 2,4â€DB from aqueous solution by using thermophilic anoxybacillus flavithermus and analysis by highâ€performance thin layer chromatography: Equilibrium and kinetic studies. Environmental Progress and Sustainable Energy, 2012, 31, 544-552.	2.3	13
38	Preconcentration with <i>Bacillus subtilis</i> –Immobilized Amberlite XAD-16: Determination of Cu ²⁺ and Ni ²⁺ in River, Soil, and Vegetable Samples. Bioremediation Journal, 2015, 19, 47-55.	2.0	13
39	Comparison of Cd(II) preconcentrations by using magnetized Pleurotus erygnii and Coprinus micaceus and its determination in real samples. Microchemical Journal, 2019, 144, 19-25.	4.5	13
40	Phallus impudicus loaded with γ-Fe2O3 as solid phase bioextractor for the preconcentrations of Zn(II) and Cr(III) from water and food samples. Process Biochemistry, 2020, 92, 149-155.	3.7	13
41	Optimization of Continuous Flow Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry for Sensitivity Improvement of Bismuth. Analytical Letters, 2012, 45, 2623-2636.	1.8	12
42	Investigations of Hg(II) and Pb(II) tolerance, removal and bioaccumulation and their effects on antioxidant enzymes on thermophilic <i>Exiguobacterium profundum</i> . Human and Ecological Risk Assessment (HERA), 2020, 26, 1234-1253.	3.4	12
43	Simultaneous preconcentrations of Cu(II), Ni(II), and Pb(II) by SPE using E. profundum loaded onto Amberlite XAD-4. Microchemical Journal, 2021, 171, 106758.	4.5	12
44	Magnetic solid-phase extraction based onCoriolus versicolor-immobilized-Fe2O3nanoparticles for preconcentration and determination of Al(III) in waterand food samples. Turkish Journal of Chemistry, 2019, 43, 1217-1228.	1.2	11
45	Resistance, removal, and bioaccumulation of Ni (II) and Co (II) and their impacts on antioxidant enzymes of Anoxybacillus mongoliensis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 235, 108790.	2.6	11
46	The Use of Fungal Biomass <i>Agaricus bisporus</i> Immobilized on Amberlite XAD-4 Resin for the Solid-Phase Preconcentration of Thorium. Bioremediation Journal, 2014, 18, 38-45.	2.0	10
47	Determination of trace Bi by ICP-OES after magnetic solid phase extraction with fullerene C ₆₀ modified l³-Fe ₂ O ₃ superparamagnetic iron oxide nanoparticles. Analytical Methods, 2015, 7, 10306-10311.	2.7	10
48	Solid-phase extraction of copper as 1-(2-pyridylazo)-2-naphthol (PAN) chelates on <i>Coprinus atramentaria</i> . International Journal of Environmental Analytical Chemistry, 2020, 100, 992-1003.	3.3	10
49	Synthesis of Bis(amino alcohol)oxalamides and Their Usage for the Preconcentration of Trace Metals by Cloud Point Extraction. Analytical Sciences, 2008, 24, 763-768.	1.6	9
50	Stability-indicating high performance thin layer chromatographic determination of sulfanilamide in human urine. Journal of Analytical Chemistry, 2009, 64, 714-720.	0.9	8
51	Preconcentration of Sn in Real Water Samples by Solid Phase Extraction Based on the Use of Helvella leucopus as a Fungal Biomass Prior to its Determination by ICP-OES. Atomic Spectroscopy, 2013, 34, 133-139.	1.2	8
52	DETERMINATION OF VANADIUM IN TURKISH ASPHALTITES. Oil Shale, 2010, 27, 331.	1.0	7
53	A new method for the preconcentrations of U(VI) and Th(IV) by magnetized thermophilic bacteria as a novel biosorbent. Analytical and Bioanalytical Chemistry, 2021, 413, 1107-1116.	3.7	6
54	Comparative solid phase extraction study on the U(VI) preconcentration by using immobilized thermotolerant Bacillus vallismortis and Bacillus mojavensis. Journal of Radioanalytical and Nuclear Chemistry, 2018, 315, 185-193.	1.5	5

#	Article	IF	CITATIONS
55	Development of Armillae mellea immobilized nanodiamond for the preconcentrations of Cr(III), Hg(II) and Zn(II). Analytical Biochemistry, 2021, 617, 114122.	2.4	5
56	Preconcentrations of Zn(II) and Hg(II) in Environmental and Food Samples by SPE on B. licheniformis Loaded Amberlite XAD-4. Biological Trace Element Research, 2022, 200, 1972-1980.	3.5	5
57	Bioaccumulation, Resistance, Removal of U(VI) and Th(IV) and Their Effects on Antioxidant Enzymes on Thermophilic <i>Anoxybacillus flavithermus</i> ST15. Geomicrobiology Journal, 2022, 39, 54-65.	2.0	5
58	A novel bio-solid phase extractor for preconcentrations of Hg and Sn in food samples. Environmental Research, 2022, 207, 112231.	7.5	4
59	Stability-indicating HPTLC analysis of flurbiprofen in pharmaceutical dosage forms. Journal of Planar Chromatography - Modern TLC, 2009, 22, 349-354.	1.2	3
60	Fractionation of Ni, Cr and Cu from Soil by Sequential Extraction Procedure and Determination by Inductively Coupled Plasma Optical Emission Spectrometry. Clean - Soil, Air, Water, 2013, 41, 1229-1234.	1.1	3
61	Cloud Point Extraction As a Preconcentration Step for Flame Atomic Absorption Spectrometric Determination of Pb. Atomic Spectroscopy, 2012, 33, 173-178.	1.2	3
62	Simultaneous high-performance thin-layer chromatographic determination of indole acetic acid, indole butyric acid, and Absisic acid inin vitroseedling of watermelon exposed to heavy metals. Journal of Planar Chromatography - Modern TLC, 2012, 25, 108-111.	1.2	2
63	Bioaccumulation, tolerance, and removal of U(VI) and Th(IV) by a novel thermophilic Bacillus cereus ST14 isolated from hot spring mud samples in Afyonkarahisar, Turkey. Biomass Conversion and Biorefinery, 2024, 14, 4341-4353.	4.6	2
64	The Role of Trace Elements in the Malignant-Benign Differentation of Pleural Effusions. Journal of Clinical and Analytical Medicine, 2016, 07, .	0.1	1
65	Determination of Hydroxymethylfurfural in Turkish Honeys, Pekmez (Grape Molasses) and Jam Samples by Highâ€Performance Liquid Chromatography with Diode Array Detection. Journal of Food Processing and Preservation, 0, , .	2.0	1
66	Chemical fractionation of nickel in asphaltite based bottom ash. Chemical Speciation and Bioavailability, 2013, 25, 113-118.	2.0	0