Katalin Gruiz

List of Publications by Citations

Source: https://exaly.com/author-pdf/10725549/katalin-gruiz-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	1,030	18	32
papers	citations	h-index	g-index
35	1,161 ext. citations	5.5	3.98
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
35	Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. <i>Environmental Science & Description (Control of the Ajka bauxite residue)</i>	10.3	127
34	Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary. <i>Environmental Science & amp; Technology</i> , 2012 , 46, 3085-92	10.3	114
33	Comparison of bioassays by testing whole soil and their water extract from contaminated sites. <i>Chemosphere</i> , 2007 , 66, 428-34	8.4	96
32	Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. <i>Environmental Science & Environmental </i>	10.3	94
31	Removal of emerging micropollutants from water using cyclodextrin. <i>Science of the Total Environment</i> , 2014 , 485-486, 711-719	10.2	56
30	Acidic sandy soil improvement with biochar - A microcosm study. <i>Science of the Total Environment</i> , 2016 , 563-564, 855-65	10.2	48
29	Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2063-71		47
28	Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. <i>Applied Geochemistry</i> , 2014 , 51, 268-277	3.5	42
27	Enhanced biodegradation of transformer oil in soils with cyclodextrinfrom the laboratory to the field. <i>Biodegradation</i> , 2005 , 16, 159-68	4.1	42
26	Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility. <i>Environmental Geochemistry and Health</i> , 2013 , 35, 643-56	4.7	41
25	Red Mud as a Chemical Stabilizer for Soil Contaminated with Toxic Metals. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 1237-1247	2.6	35
24	Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 10800-10	5.1	32
23	Removal of hazardous micropollutants from treated wastewater using cyclodextrin bead polymer - A pilot demonstration case. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121181	12.8	31
22	Assessing Toxicity of Organic Aquatic Micropollutants Based on the Total Chlorophyll Content of Lemna minor as a Sensitive Endpoint. <i>Periodica Polytechnica: Chemical Engineering</i> , 2015 , 59, 262-271	1.3	25
21	Environmental Toxicity Assessment of the Spilled Ajka Red Mud in Soil Microcosms for Its Potential Utilisation as Soil Ameliorant. <i>Periodica Polytechnica: Chemical Engineering</i> , 2015 , 59, 253-261	1.3	23
20	Effects of leaching from alkaline red mud on soil biota: modelling the conditions after the Hungarian red mud disaster. <i>Chemistry and Ecology</i> , 2013 , 29, 709-723	2.3	21
19	The potential application of red mud and soil mixture as additive to the surface layer of a landfill cover system. <i>Journal of Environmental Sciences</i> , 2016 , 44, 189-196	6.4	20

(2007-2008)

18	Development of an innovative soil remediation: "Cyclodextrin-enhanced combined technology". <i>Science of the Total Environment</i> , 2008 , 392, 12-21	10.2	18
17	Long-term effects of grain husk and paper fibre sludge biochar on acidic and calcareous sandy soils - A scale-up field experiment applying a complex monitoring toolkit. <i>Science of the Total</i> Environment, 2020 , 731, 138988	10.2	17
16	Red mud as acidic sandy soil ameliorant: a microcosm incubation study. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 1596-1606	3.5	13
15	Comparative evaluation of microbial and chemical methods for assessing 4-chlorophenol biodegradation in soil. <i>Periodica Polytechnica: Chemical Engineering</i> , 2013 , 57, 25	1.3	12
14	Change of Bioaccumulation of Toxic Metals in Vegetables. <i>Communications in Soil Science and Plant Analysis</i> , 2009 , 40, 285-293	1.5	12
13	Direct toxicity assessment - Methods, evaluation, interpretation. <i>Science of the Total Environment</i> , 2016 , 563-564, 803-12	10.2	11
12	Measuring adverse effects of contaminated soil using interactive and dynamic test methods. <i>Land Contamination and Reclamation</i> , 2009 , 17, 443-459		9
11	Variability in microbial populations in soil highly polluted with heavy metals on the basis of substrate utilization pattern analysis. <i>Journal of Soils and Sediments</i> , 2001 , 1, 151-158	3.4	8
10	Environmental Risk Assessment of Red Mud Contaminated Land in Hungary 2012,		7
9	Quantitative and Qualitative Analysis of RAMEB in Soil. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2002 , 44, 413-416		7
8	Application of cyclodextrins in environmental bioassays for soil. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2011 , 70, 307-313		5
7	Laboratory testing of biodegradation in soil: a comparison of chemical and biological methods. Land Contamination and Reclamation, 2009 , 17, 495-506		5
6	Integrated and efficient assessment of contaminated sites. <i>Land Contamination and Reclamation</i> , 2009 , 17, 371-384		4
5	Chemical Stabilisation Combined with Phytostabilisation Applied to Mine Waste Contaminated Soils in Hungary. <i>Advanced Materials Research</i> , 2007 , 20-21, 315-318	0.5	2
4	Introduction: smart environmental management. Land Contamination and Reclamation, 2009, 17, 315-3	17	2
3	Microcosm incubation study for monitoring the mid-term effects of different biochars on acidic sandy soil applying a multiparameter approach. <i>Chemical Engineering Research and Design</i> , 2018 , 120, 24-36	5.5	2
2	Environmental Toxicity Testing in the Risk Assessment of a Metal Contaminated Abandoned Mining Site in Hungary. <i>Advanced Materials Research</i> , 2007 , 20-21, 193-196	0.5	1
1	Environmental Risk Management of an Abandoned Mining Site in Hungary. <i>Advanced Materials Research</i> , 2007 , 20-21, 221-225	0.5	1