Shengdong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10725520/publications.pdf

Version: 2024-02-01

137	802	14	24
papers	citations	h-index	g-index
137 all docs	137 docs citations	137 times ranked	970 citing authors

#	Article	IF	CITATIONS
1	A High-Efficiency Segmented Reconfigurable Cyclic Shifter for 5G QC-LDPC Decoder. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 401-414.	3.5	5
2	Roles of Hot Carriers in Dynamic Self-Heating Degradation of a-InGaZnO Thin-Film Transistors. IEEE Electron Device Letters, 2022, 43, 40-43.	2.2	6
3	Low temperature and high-performance ZnSnO thin-film transistors engineered by <i>iin situ</i> thermal manipulation. Journal of Materials Chemistry C, 2022, 10, 3129-3138.	2.7	9
4	High-Performance Self-Aligned Top-Gate Amorphous InGaZnO TFTs With 4 nm-Thick Atomic-Layer-Deposited AlO _x Insulator. IEEE Electron Device Letters, 2022, 43, 729-732.	2.2	14
5	Al Reaction-Induced Conductive a-InGaZnO as Pixel Electrode for Active-Matrix Quantum-Dot LED Displays. IEEE Electron Device Letters, 2022, 43, 749-752.	2.2	3
6	Analysis of Carrier Behavior for Amorphous Indium Gallium Zinc Oxide After Supercritical Carbon Dioxide Treatment. Advanced Materials Interfaces, 2022, 9, .	1.9	1
7	Abnormal Bias Instabilities Induced by Lateral H ₂ O Diffusion Into Top-Gate Insulator of a-InGaZnO Thin-Film Transistors. IEEE Journal of the Electron Devices Society, 2022, 10, 341-345.	1.2	11
8	Self-Compensation Effect of Photo-Bias Instabilities in a-InGaZnO Thin-Film Transistors Induced by Unique Ion Migration. IEEE Transactions on Electron Devices, 2022, 69, 3206-3212.	1.6	3
9	Thorough Elimination of Persistent Photoconduction in Amorphous InZnO Thin-Film Transistor via Dual-Gate Pulses. IEEE Electron Device Letters, 2022, 43, 1247-1250.	2.2	4
10	Eliminating light depolarization from metal microstructure in liquid crystal displays. Journal of the Society for Information Display, 2021, 29, 170-178.	0.8	0
11	Self-Aligned Top-Gate Amorphous Zinc-Tin Oxide Thin-Film Transistor With Source/Drain Regions Doped by Al Reaction. IEEE Journal of the Electron Devices Society, 2021, 9, 653-657.	1.2	6
12	Performance Enhancement and Bending Restoration for Flexible Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Low-Temperature Supercritical Dehydration Treatment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8584-8594.	4.0	20
13	Pâ€1.14: An aâ€IGZO TFT AMOLED Pixel Circuit with Source Follower Structure to Alleviate Hysteresis Effect. Digest of Technical Papers SID International Symposium, 2021, 52, 448-451.	0.1	1
14	Metal Reaction-Induced Bulk-Doping Effect in Forming Conductive Source-Drain Regions of Self-Aligned Top-Gate Amorphous InGaZnO Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11442-11448.	4.0	33
15	32.3: Integrated Gate Driver Working at Low Temperature for Vehicle Displays. Digest of Technical Papers SID International Symposium, 2021, 52, 200-203.	0.1	1
16	Pâ€1.15: Short time negative gate voltage pulse to eliminate persistent photoconductivity in Amorphous InZnO thin film transistors. Digest of Technical Papers SID International Symposium, 2021, 52, 452-452.	0.1	1
17	15â€2: <i>Student Paper: ⟨i⟩ Programmable LTPSâ€TFT Gate Driver with Tunable Pulse Width for Adjusting AMOLED Brightness. Digest of Technical Papers SID International Symposium, 2021, 52, 180-183.</i>	0.1	3
18	Pâ€15: <i>Student Poster:</i> Reliable Gate Driver for Realâ€Time External Compensated AMOLED Display Using InGaZnO TFTs. Digest of Technical Papers SID International Symposium, 2021, 52, 1108-1111.	0.1	1

#	Article	IF	CITATIONS
19	Wafer-Bonding Fabricated CMUT Device with Parylene Coating. Micromachines, 2021, 12, 516.	1.4	2
20	Pâ€17: Design of AMOLED Pixel Circuit Using LTPO TFTs with Enhanced Reliability. Digest of Technical Papers SID International Symposium, 2021, 52, 1116-1119.	0.1	1
21	Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nature Communications, 2021, 12, 4603.	5.8	64
22	Pâ€1.12: Effects of Gate Voltage Pulse Width and Amplitude on Eliminating Persistent Photoconductivity in Amorphous InZnO TFTs. Digest of Technical Papers SID International Symposium, 2021, 52, 703-706.	0.1	0
23	Manipulation of epsilon-near-zero wavelength for the optimization of linear and nonlinear absorption by supercritical fluid. Scientific Reports, 2021, 11, 15936.	1.6	9
24	Reliable High-Performance Amorphous InGaZnO Schottky Barrier Diodes With Silicon Dioxide Passivation Layer. IEEE Electron Device Letters, 2021, 42, 1338-1341.	2.2	5
25	Bifunctional homologous alkali-metal artificial synapse with regenerative ability and mechanism imitation of voltage-gated ion channels. Materials Horizons, 2021, 8, 3072-3081.	6.4	6
26	Self-Heating Stress-Induced Severe Humps in Transfer Characteristics of Amorphous InGaZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2021, 68, 6197-6201.	1.6	7
27	Study and reduction of waterfall effect caused by dimming backlight in LCD based on amorphous silicon TFT. Digest of Technical Papers SID International Symposium, 2020, 51, 12-14.	0.1	0
28	Analysis and improvement of the color anomaly in a‧i TFT channel with new 4â€mask process. Digest of Technical Papers SID International Symposium, 2020, 51, 51-54.	0.1	1
29	Pâ€12: A Robust aâ€IGZO TFT Integrated Scan/Emission Driver with Dynamic Inverter for AMOLED Display. Digest of Technical Papers SID International Symposium, 2020, 51, 1354-1357.	0.1	0
30	Unveiling the influence of surrounding materials and realization of multi-level storage in resistive switching memory. Nanoscale, 2020, 12, 22070-22074.	2.8	8
31	Pâ€45: Effect of Ar / O ₂ Flow Ratio during Sputtering of InZnO Active Layer on Photocurrent and Responsivity Characteristics of Amorphous InZnO Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2020, 51, 1515-1518.	0.1	3
32	Photovoltage-Coupled Dual-Gate InGaZnO Thin-Film Transistors Operated at the Subthreshold Region for Low-Power Photodetection. ACS Applied Electronic Materials, 2020, 2, 1745-1751.	2.0	4
33	Performances of Self-Aligned Top-Gate a-IGZO TFTs with Ultrathin PECVD SiO2 Gate Dielectric. , 2020, , .		0
34	Systematic Defect Manipulation in Metal Oxide Semiconductors towards High-Performance Thin-Film Transistors., 2020,,.		0
35	51â€4: QLEDâ€onâ€Silicon Microdisplays. Digest of Technical Papers SID International Symposium, 2020, 51, 758-761.	0.1	4
36	A 16â€bit Hybrid ADC with Circularâ€Adderâ€Based Counting for 15Î⅓m Pitch 640×512 LWIR FPAs. Chinese Journal of Electronics, 2020, 29, 291-296.	0.7	3

#	Article	IF	CITATIONS
37	Fully Self-Aligned Homojunction Bottom-Gate Amorphous InGaZnO TFTs with Al Reacted Source/Drain Regions. , 2020, , .		O
38	A Novel Self-Aligned Dopant-Segregated Schottky Tunnel-FET with Asymmetry Sidewall Based on Standard CMOS Technology. , 2020, , .		0
39	Homo-Junction Bottom-Gate Amorphous In–Ga–Zn–O TFTs With Metal-Induced Source/Drain Regions. IEEE Journal of the Electron Devices Society, 2019, 7, 52-56.	1.2	9
40	Structural, optical and electrical properties of sputtered Nb doped TiO ₂ transparent conductive films., 2019,,.		0
41	Pâ€1.5: Fabrication of Selfâ€Aligned Topâ€Gate Amorphous InGaZnO Thinâ€Film Transistors with Submicron Channel Length. Digest of Technical Papers SID International Symposium, 2019, 50, 650-653.	0.1	1
42	12.5: A Depletionâ€mode Compatible Gate Driver on Array for aâ€IGZO TFTâ€OLED Displays. Digest of Technical Papers SID International Symposium, 2019, 50, 119-121.	0.1	0
43	Pâ€1.11: Relationship between Effective Mobility and Source/Drain Resistance in Selfâ€Aligned Topâ€Gate aâ€IGZO Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 666-668.	0.1	O
44	Pâ€1.14: The Influence of Bottom gate Dielectric Roughness on the Performance of Doubleâ€Gate aâ€IGZO Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 677-680.	0.1	2
45	Reduced graphene oxide-induced crystallization of CuPc interfacial layer for high performance of perovskite photodetectors. RSC Advances, 2019, 9, 3800-3808.	1.7	14
46	Pâ€76: Origin and Improvement of LCD Reflectivity. Digest of Technical Papers SID International Symposium, 2019, 50, 1522-1525.	0.1	0
47	Pâ€108: Oxide Thin Film Transistors Integrated DCâ€DC Converter with High Efficiency for Passive RFID Tag. Digest of Technical Papers SID International Symposium, 2019, 50, 1660-1663.	0.1	1
48	Pâ€8: A Depletionâ€Mode Compatible Gate Driver on Array for aâ€IGZO TFTâ€OLED Displays. Digest of Technical Papers SID International Symposium, 2019, 50, 1241-1244.	0.1	2
49	Pâ€17: IGZO TFT Gate Driver with Independent both Bootstrapping and Control Units for AMOLED Mobile Display. Digest of Technical Papers SID International Symposium, 2019, 50, 1275-1278.	0.1	O
50	Pâ€58: Efficiency Enhancement by Nonâ€Overlapping Time Design and Adaptive Ratio Control for Charge Pump of Display Drivers. Digest of Technical Papers SID International Symposium, 2019, 50, 1452-1455.	0.1	0
51	Implementation of Self-Aligned Top-Gate Amorphous Zinc Tin Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2019, 40, 901-904.	2.2	15
52	Effects of Ultraviolet Light on the Dual-Sweep <inline-formula> <tex-math notation="LaTeX">\$I\$ </tex-math> </inline-formula>âE"<inline-formula> <tex-math notation="LaTeX">\$V\$ </tex-math> </inline-formula> Curve of a-InGaZnO ₄ Thin-Film Transistor. IEEE Transactions on Electron Devices, 2019, 66, 1772-1777.	1.6	6
53	Pâ€1.7: Selfâ€aligned Topâ€gate aâ€ZrInZnO Thinâ€Film Transistors Fabricated by Cosputtering Technique. Diges of Technical Papers SID International Symposium, 2019, 50, 656-659.	t _{0.1}	O
54	Pâ€1.13: The Conductivity Modulation of Amorphous Zinc Tin Oxide Thin Film by aluminum (Al) reaction method. Digest of Technical Papers SID International Symposium, 2019, 50, 673-676.	0.1	1

#	Article	IF	Citations
55	A Quantum Dot Polarizer for Liquid Crystal Displays With Much Improved Efficiency and Viewing Angle. IEEE Journal of Quantum Electronics, 2019, 55, 1-6.	1.0	4
56	22.2: The influence of Oxygen Partial Pressure on the Performance of backâ€channelâ€etched aâ€ZTO Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 216-219.	0.1	1
57	Nonlinear photocurrent-intensity behavior of amorphous InZnO thin film transistors. Applied Physics Letters, 2018, 112, .	1.5	8
58	A Method to Reduce Forming Voltage Without Degrading Device Performance in Hafnium Oxide-Based 1T1R Resistive Random Access Memory. IEEE Journal of the Electron Devices Society, 2018, 6, 341-345.	1.2	29
59	Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 25850-25857.	4.0	36
60	Pâ€1.7: Influence of Mg Content and Argon/Oxygen Ratio on Photoelectric properties of coâ€sputtering MIZO. Digest of Technical Papers SID International Symposium, 2018, 49, 538-540.	0.1	0
61	Tunable Manipulation of Microparticles by CMUT. , 2018, , .		0
62	P-1.6: Effect of Deposition Condition of Passivation Layer on the Performance of Self-Aligned Top-Gate a-IGZO TFTs. Digest of Technical Papers SID International Symposium, 2018, 49, 535-537.	0.1	1
63	Design of a IGZO TFT-based GOA circuit for external compensation pixel circuits. , 2018, , .		0
64	Optimization of the ZTO/GI interface of Bottom-gate Amorphous ZnSnO Thin-Film Transistor. , 2018, , .		0
65	Technology Issues for Self-aligned Top-Gate Amorphous Metal Oxide Thin-Film Transistors. , 2018, , .		1
66	Ti Film Thickness Influences on the Back Channel Etched Amorphous InGaZnO <inf>4</inf> Thin Film Transistors. , 2018, , .		0
67	Pâ€1.3: The conductivity modulation of amorphous zinc tin oxide thin film by Ar plasma treatment. Digest of Technical Papers SID International Symposium, 2018, 49, 524-527.	0.1	0
68	The design of a 15-inch AMOLED display derived by GOA. , 2018, , .		2
69	24.5: Backâ€Channelâ€Etched aâ€IGZO TFTs with TiO ₂ :Nb Protective Layer. Digest of Technical Papers SID International Symposium, 2018, 49, 263-266.	0.1	0
70	Pâ€1.1: Anomalous Dependence of Threshold Voltage on Channel Width and Drain Voltage in Backâ€channelâ€etched aâ€lGZO TFTs. Digest of Technical Papers SID International Symposium, 2018, 49, 516-519.	0.1	1
71	Pâ€5.2: A gate driver circuit with aâ€iGZO TFTs for a 15â€inch AMOLED display. Digest of Technical Papers SID International Symposium, 2018, 49, 580-583.	0.1	2
72	Pâ€1.14: The Influence of Dualâ€channel on the Performance of Selfâ€Align Topâ€Gate IGZO Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2018, 49, 561-564.	0.1	0

#	Article	IF	Citations
73	1.3: An Evaluation Method of TFT Integrated Gate Driver for UHD Display. Digest of Technical Papers SID International Symposium, 2018, 49, 6-8.	0.1	0
74	Pâ€6.1: Asymmetric Effects of Gateâ€Bias Stress Voltage on the Stability under Positive and Negative Gateâ€Bias Stress of aâ€IGZO TFTs. Digest of Technical Papers SID International Symposium, 2018, 49, 597-600.	0.1	2
75	Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 $1\sqrt{4}$ m. Nanophotonics, 2018, 7, 1835-1843.	2.9	33
76	Floating top gate-induced output enhancement of a-InGaZnO thin film transistors under single gate operations. Applied Physics Letters, 2018, 113 , .	1.5	7
77	Pâ€43: Implementation of Digital Thinâ€Film Transistor Integrated Ambient Light Sensor with High Reliability. Digest of Technical Papers SID International Symposium, 2018, 49, 1357-1360.	0.1	1
78	Scalability and Stability Enhancement in Self-Aligned Top-Gate Indium- Zinc-Oxide TFTs With Al Reacted Source/Drain. IEEE Journal of the Electron Devices Society, 2018, 6, 680-684.	1.2	9
79	Pâ€47: An OLEDoS Pixel Circuit with Extended Data Voltage Range for High Resolution Microâ€Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 1373-1376.	0.1	4
80	Drain-Induced-Barrier-Lowing-Like Effect Induced by Oxygen-Vacancy in Scaling-Down via-Contact Type Amorphous InGaZnO Thin-Film Transistors. IEEE Journal of the Electron Devices Society, 2018, 6, 685-690.	1.2	21
81	Enhancing the Electrical Uniformity and Reliability of the HfO ₂ -Based RRAM Using High-Permittivity Ta ₂ O ₅ Side Wall. IEEE Journal of the Electron Devices Society, 2018, 6, 627-632.	1.2	17
82	Pâ€13: Electrical Characteristics and Stability of Doubleâ€Gate aâ€IGZO Thin Film Transistors with Selfâ€Aligned Topâ€Gate. Digest of Technical Papers SID International Symposium, 2018, 49, 1227-1230.	0.1	0
83	Pâ€48: Integrated aâ€IGZO TFT Gate Driver with Programmable Output for AMOLED Display. Digest of Technical Papers SID International Symposium, 2018, 49, 1377-1380.	0.1	6
84	P-54: A Low-Power Time-Interleaving Analog Adder for Externally Compensated AMOLED/Micro-LED Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 1399-1402.	0.1	2
85	Pâ€54: A Highâ€Voltage Analog Adder Based on Classâ€B Amplifier for Source Driver of AMOLED External Compensation Scheme. Digest of Technical Papers SID International Symposium, 2017, 48, 1442-1445.	0.1	3
86	7â€3: A Lowâ€Power and Highâ€Stable TFT Gate Driver With a Novel Bootstrap Scheme. Digest of Technical Papers SID International Symposium, 2017, 48, 72-75.	0.1	1
87	Resistive Random Access Memory: Solving the Scaling Issue of Increasing Forming Voltage in Resistive Random Access Memory Using Highâ€ <i>k</i> Spacer Structure (Adv. Electron. Mater. 9/2017). Advanced Electronic Materials, 2017, 3, .	2.6	0
88	Pâ€8: Photocurrent Characteristics of Amorphous MgInO Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2017, 48, 1254-1257.	0.1	1
89	Pâ€9: Parylene / Al ₂ O ₃ Double Layer Passivated Amorphous InGaZnO Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2017, 48, 1258-1261.	0.1	7
90	Pâ€20: Effects of N ₂ O Plasma Treatment Time on the Performance of Selfâ€Aligned Topâ€Gate amorphous oxide Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2017, 48, 1299-1302.	0.1	11

#	Article	IF	CITATIONS
91	Pâ€21: The Effect of Thermal Annealing Sequence on the Performance of Selfâ€Aligned Topâ€Gate aâ€IGZO TFTs. Digest of Technical Papers SID International Symposium, 2017, 48, 1303-1306.	0.1	1
92	Pâ€28: Robust Gate Driver Design with Etchingâ€Stopâ€Layer Type InGaZnO TFTs Using Stack Buffer Structure. Digest of Technical Papers SID International Symposium, 2017, 48, 1331-1334.	0.1	4
93	Solving the Scaling Issue of Increasing Forming Voltage in Resistive Random Access Memory Using Highâ€ <i>k</i> Spacer Structure. Advanced Electronic Materials, 2017, 3, 1700171.	2.6	19
94	A power-on-reset circuit with precisely triggered threshold voltages. , 2017, , .		1
95	$\label{thm:continuous} TiO < inf>2 < / inf>: Nb film thickness influences on the amorphous InGaZnO thin film transistors with Mo/TiO2: Nb source-drain electrodes. , 2017, , .$		O
96	A 27.6 MHz 297 \hat{l} 4W 33 ppm/ \hat{A} °C CMOS relaxation oscillator with an adjustable temperature compensation scheme. , 2017, , .		0
97	12-4: TFT Integrated Gate Driver with V _{TH} Shift Compensable Low-Level Holding Unit. Digest of Technical Papers SID International Symposium, 2016, 47, 134-137.	0.1	1
98	P-44: A Current Source Free Separate Frame Compensated Voltage-Programmed Active Matrix Organic Light Emitting Diode Pixel Circuit. Digest of Technical Papers SID International Symposium, 2016, 47, 1282-1285.	0.1	0
99	P-36: An Area-Efficient Segmented R-DAC Realized by Low-Voltage Transistors for AMOLED Driver Ics. Digest of Technical Papers SID International Symposium, 2016, 47, 1257-1260.	0.1	O
100	P-37: A High Accuracy Current Comparison Scheme for External Compensation Circuit of AMOLED Displays. Digest of Technical Papers SID International Symposium, 2016, 47, 1261-1264.	0.1	7
101	P-41: A Low-Power ESL a-IZGO TFT Integrated Gate Driver Circuit. Digest of Technical Papers SID International Symposium, 2016, 47, 1272-1275.	0.1	2
102	Photoreactive and Metalâ€Platable Copolymer Inks for Highâ€Throughput, Roomâ€Temperature Printing of Flexible Metal Electrodes for Thinâ€Film Electronics. Advanced Materials, 2016, 28, 4926-4934.	11.1	77
103	A Back-Channel-Etched Amorphous InGaZnO Thin-Film Transistor Technology With Al-Doped ZnO as Source/Drain and Pixel Electrodes. IEEE Transactions on Electron Devices, 2016, 63, 2205-2209.	1.6	15
104	Comparison of N <inf> 2</inf> and ar plasma treatment for source/drain formation in self-aligned top-gate amorphous InGaZnO thin film transistor. , 2016, , .		1
105	Oxygen partial pressure and annealing temperature influence on the performance of back-channel-etch zinc tin oxide thin film transistors. , $2016, \ldots$		1
106	Estimation of threshold voltage shift in a-IGZO TFTs under different bias temperature stress by improved stretched-exponential equation. , 2016 , , .		3
107	Impact of wet etchant with different PH value on the performance of back-channel-etch a-IGZO thin-film-transistor. , 2016 , , .		O
108	One Gate Diode-Connected Dual-Gate a-IGZO TFT Driven Pixel Circuit for Active Matrix Organic Light-Emitting Diode Displays. IEEE Transactions on Electron Devices, 2016, 63, 3800-3803.	1.6	34

#	Article	IF	CITATIONS
109	Characteristics of amorphous In-Ga-Zn-O thin-film-transistors with channel layer deposited by bias sputtering. , 2016, , .		0
110	P-34: A Peripheral Compensation Scheme for AMOLED with Data Voltage, V _{TH} and Aging Information Analogously Added in Pixel Circuit. Digest of Technical Papers SID International Symposium, 2016, 47, 1250-1253.	0.1	2
111	P-15: AZO Etch Buffer Layer based Back-Channel-Etch a-IGZO TFT Technology. Digest of Technical Papers SID International Symposium, 2016, 47, 1172-1175.	0.1	2
112	Pâ€9: Improved Electrical Stability of Doubleâ€Gate aâ€IGZO TFTs. Digest of Technical Papers SID International Symposium, 2015, 46, 1151-1154.	0.1	5
113	Comparative study of aâ€IGZO TFTs with direct current and radio frequency sputtered channel layers. Journal of the Society for Information Display, 2015, 23, 306-312.	0.8	3
114	Pâ€48: A Simple Low Temperature Workable aâ€6i:H TFT Integrated Gate Driver on Array. Digest of Technical Papers SID International Symposium, 2015, 46, 1316-1319.	0.1	6
115	Pâ€46: Rowâ€Division Driving Scheme for Active Matrix OLED Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 1308-1311.	0.1	0
116	An Accurate and Fast Current-Biased Voltage-Programmed AMOLED Pixel Circuit With OLED Biased in AC Mode. Journal of Display Technology, 2015, 11, 615-619.	1.3	7
117	Nanocrystalline SnO2 thin films prepared by anodization of sputtered Sn thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	11
118	Performance and Stability Improvements of Back-Channel-Etched Amorphous Indium–Gallium–Zinc Thin-Film-Transistors by CF ₄ +O ₂ Plasma Treatment. IEEE Electron Device Letters, 2015, 36, 911-913.	2.2	14
119	Effects of over-etching time on the characteristics of amorphous IGZO thin-film transistors with back-channel-etch structure. , 2015, , .		2
120	Fabrication of p-type copper oxide thin-film transisters at different oxygen partial pressure. , 2014, , .		6
121	A gate-stress-induced & amp; $\#x0394; V\< \inf \> th\< \inf \> model reflecting impact of electric field in IGZO thin film transistors., 2014,,.$		0
122	Indium gallium zinc oxide - Carbon nanotube composite thin film transistor. , 2014, , .		1
123	Magnesium-doped Indium Oxide thin film transistors for ultraviolet detection. , 2014, , .		1
124	Development of low temperature amorphous tin-doped indium oxide thin-film transistors technology. , 2014, , .		0
125	Pâ€12: Aâ€Si:H TFT Gate Driver with Shared Dual Pullâ€Down Units for Largeâ€Sized TFTâ€LCD Applications. Dig of Technical Papers SID International Symposium, 2014, 45, 986-989.	est 0.1	7
126	Pâ€24: IGZOâ€TFT Based Latch Circuit with High Stability and Fullâ€Swing Output for Systemâ€onâ€Panel ^{â€} . Digest of Technical Papers SID International Symposium, 2014, 45, 1031-1034.	0.1	0

#	Article	IF	CITATIONS
127	A concrete integrated gate driver with sharing low-level-holding structure. , 2014, , .		O
128	A Multi-\$V_{mathrm {th}}\$ a-IGZO TFT Technology Using Anodization to Selectively Reduce Oxygen Vacancy Concentration in Channel Regions. IEEE Electron Device Letters, 2014, 35, 1248-1250.	2.2	3
129	Anodized ITO Thinâ€Film Transistors. Advanced Functional Materials, 2014, 24, 4170-4175.	7.8	41
130	Study on the transition between p and n types of SnO <inf>x</inf> film deposited by DC sputtering. , 2014, , .		1
131	A Hybrid a-Si and Poly-Si TFTs Technology for AMOLED Pixel Circuits. Journal of Display Technology, 2014, 10, 317-320.	1.3	8
132	$lower_continuous_continu$		0
133	Fabrication of indium-tin-oxide thin-film transistor using anodization. , 2014, , .		O
134	Separate Frame Compensated Current-Biased Voltage-Programmed Active Matrix Organic Light-Emitting Diode Pixel. IEEE Electron Device Letters, 2014, 35, 847-849.	2.2	6
135	P.4: A Chargeâ€Cyclic Digitalâ€ŧoâ€Analog Converter for IGZO TFT Integrated Data Driver. Digest of Technical Papers SID International Symposium, 2013, 44, 999-1002.	0.1	0
136	a-IGZO TFTs With Inductively Coupled Plasma Chemical Vapor Deposited \${m SiO}_{x}\$ Gate Dielectric. IEEE Transactions on Electron Devices, 2013, 60, 2687-2690.	1.6	10
137	High-Speed Low-Power Rail-to-Rail Buffer using Dynamic-Current Feedback for OLED Source Driver Applications. Analog Integrated Circuits and Signal Processing, $0, 1$.	0.9	0