R Cunning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1072528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral <i>Montastraea cavernosa</i> . Molecular Ecology, 2022, 31, 588-602.	3.9	14
2	Temperatureâ€mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warming. Clobal Change Biology, 2022, 28, 2006-2025.	9.5	12
3	Will coral reefs survive by adaptive bleaching?. Emerging Topics in Life Sciences, 2022, 6, 11-15.	2.6	1
4	Increasing comparability among coral bleaching experiments. Ecological Applications, 2021, 31, e02262.	3.8	68
5	Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211613.	2.6	39
6	High light alongside elevated PCO2Âalleviates thermal depression of photosynthesis in a hard coral (Pocillopora acuta). Journal of Experimental Biology, 2020, 223, .	1.7	3
7	Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nature Communications, 2020, 11, 6097.	12.8	67
8	Thermotolerant coral symbionts modulate heat stressâ€responsive genes in their hosts. Molecular Ecology, 2020, 29, 2940-2950.	3.9	39
9	Characterization of a thermally tolerant Orbicella faveolata reef in Abaco, The Bahamas. Coral Reefs, 2020, 39, 675-685.	2.2	23
10	Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes. Marine Pollution Bulletin, 2019, 145, 185-199.	5.0	51
11	Competition and succession among coral endosymbionts. Ecology and Evolution, 2019, 9, 12767-12778.	1.9	25
12	Coral color and depth drive symbiosis ecology of Montipora capitata in KÄneâ€~ohe Bay, Oâ€~ahu, Hawaiâ€~i. Coral Reefs, 2018, 37, 423-430.	2.2	45
13	Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs, 2018, 37, 145-152.	2.2	62
14	Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution. Scientific Reports, 2018, 8, 16134.	3.3	112
15	Tenacious D: <i>Symbiodinium</i> in clade D remain in reef corals at both high and low temperature extremes despite impairment. Journal of Experimental Biology, 2017, 220, 1192-1196.	1.7	112
16	A dynamic bioenergetic model for coral- Symbiodinium symbioses and coral bleaching as an alternate stable state. Journal of Theoretical Biology, 2017, 431, 49-62.	1.7	63
17	Elevated <i>p</i> CO ₂ affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. Royal Society Open Science, 2017, 4, 170683.	2.4	33
18	Speciesâ€specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Global Change Biology, 2017, 23, 1023-1035.	9.5	61

R CUNNING

#	Article	IF	CITATIONS
19	Diversity, Distribution and Stability of Symbiodinium in Reef Corals of the Eastern Tropical Pacific. Coral Reefs of the World, 2017, , 405-420.	0.7	12
20	Using high-throughput sequencing of ITS2 to describe <i>Symbiodinium</i> metacommunities in St. John, US Virgin Islands. PeerJ, 2017, 5, e3472.	2.0	88
21	The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. Journal of Phycology, 2016, 52, 1114-1124.	2.3	22
22	Patterns of bleaching and recovery of Montipora capitata in KÄneâ€~ohe Bay, Hawaiâ€~i, USA. Marine Ecology - Progress Series, 2016, 551, 131-139.	1.9	98
23	Variability of Symbiodinium Communities in Waters, Sediments, and Corals of Thermally Distinct Reef Pools in American Samoa. PLoS ONE, 2015, 10, e0145099.	2.5	81
24	Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141725.	2.6	187
25	Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs, 2015, 34, 155-160.	2.2	111
26	Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology, 2015, 21, 236-249.	9.5	329
27	Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change. Ecology, 2015, 96, 1411-1420.	3.2	69
28	Not just who, but how many: the importance of partner abundance in reef coral symbioses. Frontiers in Microbiology, 2014, 5, 400.	3.5	88
29	Flexible associations between Pocillopora corals and Symbiodinium limit utility of symbiosis ecology in defining species. Coral Reefs, 2013, 32, 795-801.	2.2	33
30	Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nature Climate Change, 2013, 3, 259-262.	18.8	278
31	Changes in coral microbial communities in response to a natural pH gradient. ISME Journal, 2012, 6, 1775-1785.	9.8	98
32	Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites. PLoS ONE, 2011, 6, e26914.	2.5	108