Minna Väliranta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10724990/publications.pdf Version: 2024-02-01

Μίνινα Μάφαντα

#	Article	IF	CITATIONS
1	A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene, 2014, 24, 1028-1042.	1.7	404
2	The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quaternary Science Reviews, 2009, 28, 2445-2464.	3.0	196
3	Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 2018, 8, 907-913.	18.8	188
4	High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. Holocene, 2007, 17, 1093-1107.	1.7	136
5	Widespread drying of European peatlands in recent centuries. Nature Geoscience, 2019, 12, 922-928.	12.9	130
6	Conservative composition of n-alkane biomarkers in Sphagnum species: Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry, 2010, 41, 214-220.	1.8	117
7	The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. Quaternary Science Reviews, 2010, 29, 611-617.	3.0	109
8	Warm summers during the Younger Dryas cold reversal. Nature Communications, 2018, 9, 1634.	12.8	103
9	Widespread global peatland establishment and persistence over the last 130,000 y. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4822-4827.	7.1	82
10	Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene, 2013, 23, 1596-1606.	1.7	76
11	Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130382.	4.0	69
12	Palaeolimnological Development of Lake Njargajavri, Northern Finnish Lapland, in a Changing Holocene Climate and Environment. Journal of Paleolimnology, 2006, 35, 65-81.	1.6	62
13	Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation. Holocene, 2013, 23, 25-35.	1.7	62
14	Scattered late-glacial and early Holocene tree populations as dispersal nuclei for forest development in north-eastern European Russia. Journal of Biogeography, 2011, 38, 922-932.	3.0	60
15	The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia. Quaternary Research, 2011, 75, 501-511.	1.7	59
16	Neutral monosaccharides as biomarker proxies for bog-forming plants for application to palaeovegetation reconstruction in ombrotrophic peat deposits. Organic Geochemistry, 2008, 39, 1790-1799.	1.8	56
17	The extent and meaning of hybridization and introgression between Siberian spruce (<i>Picea) Tj ETQq1 1 0.784 Molecular Ecology, 2016, 25, 2773-2789.</i>	314 rgBT 3.9	Overlock 10 54
18	Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Climate of the Past, 2018, 14, 473-514.	3.4	54

Minna Väranta

#	Article	IF	CITATIONS
19	New evidence of warm early-Holocene summers in subarctic Finland based on an enhanced regional chironomid-based temperature calibration model. Quaternary Research, 2014, 81, 50-62.	1.7	48
20	Fire history and vegetation recovery in two raised bogs at the Baltic Sea. Journal of Vegetation Science, 2011, 22, 1084-1093.	2.2	47
21	Holocene climate and landscape evolution East of the Pechora Delta, East-European Russian Arctic. Quaternary Research, 2003, 59, 335-344.	1.7	45
22	Holocene development of aquatic vegetation in shallow Lake Njargajavri, Finnish Lapland, with evidence of water-level fluctuations and drying. Journal of Paleolimnology, 2005, 34, 203-215.	1.6	43
23	Holocene fen–bog transitions, current status in Finland and future perspectives. Holocene, 2017, 27, 752-764.	1.7	42
24	Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nature Communications, 2018, 9, 2851.	12.8	41
25	Palaeoecological evidence of changes in vegetation and climate during the Holocene in the pre-Polar Urals, northeast European Russia. Journal of Quaternary Science, 2003, 18, 503-520.	2.1	40
26	Decreased carbon accumulation feedback driven by climateâ€induced drying of two southern boreal bogs over recent centuries. Global Change Biology, 2020, 26, 2435-2448.	9.5	40
27	The n-alkane and sterol composition of living fen plants as a potential tool for palaeoecological studies. Organic Geochemistry, 2013, 59, 1-9.	1.8	36
28	Holocene tree line, permafrost, and climate dynamics in the Nenets Region, East European Arctic. Canadian Journal of Earth Sciences, 2004, 41, 1141-1158.	1.3	34
29	Early Weichselian interstadial (MIS 5c) summer temperatures were higher than today in northern Fennoscandia. Quaternary Science Reviews, 2009, 28, 777-782.	3.0	32
30	Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland. Quaternary Science Reviews, 2016, 142, 1-15.	3.0	32
31	Hydroclimatic shifts in northeast Thailand during the last two millennia – the record of Lake Pa Kho. Quaternary Science Reviews, 2015, 111, 62-71.	3.0	31
32	Lateral expansion and carbon exchange of a boreal peatland in Finland resulting in 7000 years of positive radiative forcing. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 562-577.	3.0	31
33	Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. Journal of Paleolimnology, 2011, 45, 339-352.	1.6	30
34	Large shifts in vegetation and climate during the Early Weichselian (MIS 5d-c) inferred from multi-proxy evidence at Sokli (northern Finland). Quaternary Science Reviews, 2012, 41, 22-38.	3.0	30
35	Early Weichselian (MIS 5d and 5c) temperatures and environmental changes in northern Fennoscandia as recorded by chironomids and macroremains at Sokli, northeast Finland. Boreas, 2010, 39, 689-704.	2.4	29
36	Major cooling intersecting peak Eemian Interglacial warmth in northern Europe. Quaternary Science Reviews, 2015, 122, 293-299.	3.0	28

MINNA VäRANTA

#	Article	IF	CITATIONS
37	Climate and environment in southwest Sweden 15.5–11.3Âcal. ka <scp>BP</scp> . Boreas, 2018, 47, 687-710.	2.4	28
38	Development, carbon accumulation, and radiative forcing of a subarctic fen over the Holocene. Holocene, 2014, 24, 1156-1166.	1.7	26
39	Unexpected Problems in AMS ¹⁴ C Dating of Fen Peat. Radiocarbon, 2014, 56, 95-108.	1.8	26
40	Mid-Holocene palaeoclimatic and palaeohydrological conditions in northeastern European Russia: a multi-proxy study of Lake Vankavad. Journal of Paleolimnology, 2003, 30, 415-426.	1.6	25
41	Comparison of quantitative Holocene temperature reconstructions using multiple proxies from a northern boreal lake. Holocene, 2017, 27, 1745-1755.	1.7	23
42	Vegetation dynamics during the Younger Dryas–Holocene transition in the extreme northern taiga zone, northeastern European Russia. Boreas, 2006, 35, 202-212.	2.4	22
43	Actinobacteria community structure in the peat profile of boreal bogs follows a variation in the microtopographical gradient similar to vegetation. Plant and Soil, 2013, 369, 103-114.	3.7	22
44	Lake Kumphawapi revisited – The complex climatic and environmental record of a tropical wetland in NE Thailand. Holocene, 2016, 26, 614-626.	1.7	22
45	Comparison of Cladocera-based water-depth reconstruction against other types of proxy data in Finnish Lapland. Hydrobiologia, 2011, 676, 155-172.	2.0	21
46	Widespread recent ecosystem state shifts in highâ€latitude peatlands of northeastern Canada and implications for carbon sequestration. Global Change Biology, 2022, 28, 1919-1934.	9.5	20
47	A combined biogeochemical and palaeobotanical approach to study permafrost environments and past dynamics. Journal of Quaternary Science, 2015, 30, 189-200.	2.1	19
48	Large variability in n-alkane δ13C values in Lake Pa Kho (Thailand) driven by wetland wetness and aquatic productivity. Organic Geochemistry, 2016, 97, 53-60.	1.8	19
49	Overlooked organic vapor emissions from thawing Arctic permafrost. Environmental Research Letters, 2020, 15, 104097.	5.2	17
50	First physical evidence for forested environment in the Arctic during MIS 3. Scientific Reports, 2016, 6, 29054.	3.3	16
51	Testate amoeba as palaeohydrological indicators in the permafrost peatlands of northâ€east European Russia and Finnish Lapland. Journal of Quaternary Science, 2017, 32, 976-988.	2.1	15
52	Floral evidence for high summer temperatures in southern Scandinavia during 15–11Âcal ka BP. Quaternary Science Reviews, 2020, 233, 106243.	3.0	15
53	Evaluating environmental drivers of Holocene changes in water chemistry and aquatic biota composition at Lake Loitsana, NE Finland. Journal of Paleolimnology, 2014, 52, 311.	1.6	14
54	Development of an Eemian (MIS 5e) Interglacial palaeolake at Sokli (N Finland) inferred using multiple proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463, 11-26.	2.3	11

Minna Väranta

#	Article	IF	CITATIONS
55	Pollen and macrofossilâ€inferred palaeoclimate at the Ridge Site, Hudson Bay Lowlands, Canada: evidence for a dry climate and significant recession of the Laurentide Ice Sheet during Marine Isotope Stage 3. Boreas, 2017, 46, 388-401.	2.4	11
56	Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone, northeastern European Russia. Boreas, 2008, 35, 202-212.	2.4	10
57	Plant macrofossil and biomarker evidence of fen–bog transition and associated changes in vegetation in two Finnish peatlands. Holocene, 2014, 24, 828-841.	1.7	10
58	Reâ€evaluation of late <scp>H</scp> olocene fire histories of three boreal bogs suggest a link between bog fire and climate. Boreas, 2015, 44, 60-67.	2.4	9
59	Warm summers and rich biotic communities during N-Hemisphere deglaciation. Global and Planetary Change, 2018, 167, 61-73.	3.5	9
60	Postglacial peatland vegetation succession in Store Mosse bog, southâ€central Sweden: An exploration of factors driving species change. Boreas, 2022, 51, 651-666.	2.4	7
61	Late Pleistocene chronology, palaeoecology and stratigraphy at a suite of sites along the Albany River, Hudson Bay Lowlands, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 492, 50-63.	2.3	6
62	Identifying main uncertainties in estimating past and present radiative forcing of peatlands. Global Change Biology, 2022, 28, 4069-4084.	9.5	5
63	Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces. Quaternary Science Reviews, 2021, 264, 107022.	3.0	3
64	Prolonged interglacial warmth during the Last Glacial in northern Europe. Boreas, 2021, 50, 331-350.	2.4	3
65	Paleoecological assessment of cladoceran community dynamics in two subarctic peatlands. Wetlands, 2019, 39, 831-839	1.5	2