Arunika H L A N Gunawardena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1072476/publications.pdf Version: 2024-02-01

Arunika H L A N

#	Article	IF	CITATIONS
1	Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize(Zea mays L.). Planta, 2001, 212, 205-214.	3.2	297
2	Programmed Cell Death Remodels Lace Plant Leaf Shape during Development[W]. Plant Cell, 2004, 16, 60-73.	6.6	177
3	Programmed cell death and tissue remodelling in plants: Fig. 1 Journal of Experimental Botany, 2008, 59, 445-451.	4.8	114
4	The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Molecular Biology, 2007, 65, 747-761.	3.9	102
5	Programmed cell death in C. elegans, mammals and plants. European Journal of Cell Biology, 2012, 91, 603-613.	3.6	86
6	Programmed cell death and leaf morphogenesis in Monstera obliqua (Araceae). Planta, 2005, 221, 607-618.	3.2	62
7	Dynamic controlled atmosphere (DCA): Does fluorescence reflect physiology in storage?. Postharvest Biology and Technology, 2012, 64, 19-30.	6.0	59
8	The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 462 Td
9	Cell wall degradation and modification during programmed cell death in lace plant, <i>Aponogeton madagascariensis</i> (Aponogetonaceae). American Journal of Botany, 2007, 94, 1116-1128.	1.7	47
10	The effect of temperature and other factors on chlorophyll a fluorescence and the lower oxygen limit in apples (Malus domestica). Postharvest Biology and Technology, 2010, 55, 21-28.	6.0	43
11	Programmed cell death: genes involved in signaling, regulation, and execution in plants and animals. Botany, 2015, 93, 193-210.	1.0	43
12	Alternative modes of leaf dissection in monocotyledons. Botanical Journal of the Linnean Society, 2006, 150, 25-44.	1.6	40
13	In vivo study of developmental programmed cell death using the lace plant (<i>Aponogeton) Tj ETQq1 1 0.7843 865-876.</i>	14 rgBT /O 1.7	verlock 10 40
14	Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?. BMC Plant Biology, 2011, 11, 102.	3.6	39
15	Remodelling of lace plant leaves: antioxidants and ROS are key regulators of programmed cell death. Planta, 2017, 246, 133-147.	3.2	37
16	Unveiling Interactions among Mitochondria, Caspase-Like Proteases, and the Actin Cytoskeleton during Plant Programmed Cell Death (PCD). PLoS ONE, 2013, 8, e57110.	2.5	31
17	Environmentally induced programmed cell death in leaf protoplasts of Aponogeton madagascariensis. Planta 2011 233 407-421	3.2	27

A comparison of induced and developmental cell death morphologies in lace plant (Aponogeton) Tj ETQq000 rgBT₃/Overlock 10 Tf 50 6

Arunika H L A N

#	Article	IF	CITATIONS
19	Lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis. Plant Molecular Biology, 2015, 89, 215-227.	3.9	22
20	Discovery of pan autophagy inhibitors through a high-throughput screen highlights macroautophagy as an evolutionarily conserved process across 3 eukaryotic kingdoms. Autophagy, 2017, 13, 1556-1572.	9.1	22
21	The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants. Photosynthesis Research, 2011, 107, 223-235.	2.9	20
22	Hsp70 plays a role in programmed cell death during the remodelling of leaves of the lace plant (Aponogeton madagascariensis). Journal of Experimental Botany, 2020, 71, 907-918.	4.8	16
23	Methods to Study Plant Programmed Cell Death. Methods in Molecular Biology, 2016, 1419, 145-160.	0.9	15
24	The lace plant: a novel model system to study plant proteases during developmental programmed cell death in vivo. Physiologia Plantarum, 2012, 145, 114-120.	5.2	13
25	The Function of Autophagy in Lace Plant Programmed Cell Death. Frontiers in Plant Science, 2019, 10, 1198.	3.6	13
26	Vacuolar processing enzymes, AmVPE1 and AmVPE2, as potential executors of ethylene regulated programmed cell death in the lace plant (<i>Aponogeton madagascariensis</i>). Botany, 2018, 96, 235-247.	1.0	12
27	Regeneration of the aquatic monocot Aponogeton madagascariensis (lace plant) through callus induction. Aquatic Botany, 2011, 94, 143-149.	1.6	10
28	Calcium inhibition halts developmental programmed cell death in the lace plant, Aponogeton madagascariensis?. Botany, 2010, 88, 206-210.	1.0	9
29	The role of auxin in developmentally regulated programmed cell death in lace plant. American Journal of Botany, 2020, 107, 577-586.	1.7	7
30	Determining the effect of calcium on cell death rate and perforation formation during leaf development in the novel model system, the lace plant (Aponogeton madagascariensis). Journal of Microscopy, 2020, 278, 132-144.	1.8	5
31	RNA-Seq analysis reveals potential regulators of programmed cell death and leaf remodelling in lace plant (Aponogeton madagascariensis). BMC Plant Biology, 2021, 21, 375.	3.6	5
32	Identification of Differentially Expressed Genes during Lace Plant Leaf Development. International Journal of Plant Sciences, 2016, 177, 419-431.	1.3	4
33	Editorial: Plant Programmed Cell Death Revisited. Frontiers in Plant Science, 2021, 12, 672465.	3.6	4
34	A comparison of the early developmental morphologies of <i>Aponogeton madagascariensis</i> and <i>A.boivinianus</i> . Botany, 2015, 93, 783-791.	1.0	2