
Elham Assadpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10724759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science and Technology, 2018, 74, 132-146.	7.8	309
2	A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition, 2019, 59, 3129-3151.	5.4	307
3	Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science and Technology, 2018, 76, 56-66.	7.8	298
4	Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics, 2018, 546, 194-214.	2.6	265
5	Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annual Review of Food Science and Technology, 2019, 10, 103-131.	5.1	233
6	Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules, 2016, 82, 816-822.	3.6	188
7	Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science, 2020, 278, 102140.	7.0	178
8	Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloids, 2018, 77, 152-162.	5.6	174
9	Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 954-994.	5.9	159
10	Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydrate Polymers, 2017, 177, 369-377.	5.1	158
11	Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. International Journal of Biological Macromolecules, 2017, 95, 238-247.	3.6	158
12	Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science, 2020, 275, 102048.	7.0	155
13	Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chemistry, 2017, 221, 1962-1969.	4.2	150
14	Storage stability of encapsulated barberry's anthocyanin and its application in jelly formulation. Journal of Food Engineering, 2016, 181, 59-66.	2.7	130
15	Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by <i>in vitro</i> methods. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2862-2884.	5.9	124
16	Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science and Technology, 2020, 101, 106-121.	7.8	118
17	Main chemical compounds and pharmacological activities of stigmas and tepals of â€~red gold'; saffron. Trends in Food Science and Technology, 2016, 58, 69-78.	7.8	115
18	Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International Journal of Biological Macromolecules, 2016, 86, 197-207.	3.6	112

ELHAM ASSADPOUR

#	Article	IF	CITATIONS
19	Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chemistry, 2017, 229, 286-295.	4.2	110
20	Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science and Technology, 2020, 100, 190-209.	7.8	96
21	Bioactive-loaded nanocarriers for functional foods: from designing to bioavailability. Current Opinion in Food Science, 2020, 33, 21-29.	4.1	85
22	Evaluation of Folic Acid Nano-encapsulation by Double Emulsions. Food and Bioprocess Technology, 2016, 9, 2024-2032.	2.6	83
23	Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends in Food Science and Technology, 2020, 102, 71-90.	7.8	76
24	Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science, 2020, 278, 102122.	7.0	75
25	Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocolloids, 2020, 101, 105572.	5.6	72
26	Spray drying of folic acid within nano-emulsions: Optimization by Taguchi approach. Drying Technology, 2017, 35, 1152-1160.	1.7	70
27	Drug nanodelivery systems based on natural polysaccharides against different diseases. Advances in Colloid and Interface Science, 2020, 284, 102251.	7.0	70
28	Application of nano/microencapsulated phenolic compounds against cancer. Advances in Colloid and Interface Science, 2020, 279, 102153.	7.0	70
29	Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science, 2020, 280, 102166.	7.0	69
30	Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition, 2021, 61, 522-534.	5.4	61
31	Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol. Carbohydrate Polymers, 2020, 235, 115979.	5.1	56
32	Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry, 2021, 364, 130376.	4.2	56
33	Production of a natural color through microwaveâ€assisted extraction of saffron tepal's anthocyanins. Food Science and Nutrition, 2019, 7, 1438-1445.	1.5	52
34	Extraction and purification of d-limonene from orange peel wastes: Recent advances. Industrial Crops and Products, 2022, 177, 114484.	2.5	43
35	Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Critical Reviews in Food Science and Nutrition, 2021, 61, 3031-3065.	5.4	42
36	Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Advances in Colloid and Interface Science, 2021, 290, 102384.	7.0	36

Elham Assadpour

#	Article	IF	CITATIONS
37	Encapsulation by nanoemulsions. , 2017, , 36-73.		35
38	Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control, 2021, 128, 108180.	2.8	29
39	Formulation and Application of Nanoemulsions for Nutraceuticals and Phytochemicals. Current Medicinal Chemistry, 2020, 27, 3079-3095.	1.2	28
40	Evaluating the structural properties of bioactiveâ€loaded nanocarriers with modern analytical tools. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3266-3322.	5.9	26
41	Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Advances in Colloid and Interface Science, 2021, 295, 102504.	7.0	26
42	Nanoencapsulation. , 2019, , 35-61.		25
43	Release of catechin from Azivash gum-polyvinyl alcohol electrospun nanofibers in simulated food and digestion media. Food Hydrocolloids, 2021, 112, 106366.	5.6	23
44	Encapsulation of rose essential oil using whey protein concentrate-pectin nanocomplexes: Optimization of the effective parameters. Food Chemistry, 2021, 356, 129731.	4.2	22
45	Release, Characterization, and Safety of Nanoencapsulated Food Ingredients. , 2017, , 401-453.		17
46	Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Advances in Colloid and Interface Science, 2022, 302, 102622.	7.0	16
47	Encapsulation of food ingredients by nanostructured lipid carriers (NLCs). , 2019, , 217-270.		12
48	Pesticide-loaded colloidal nanodelivery systems; preparation, characterization, and applications. Advances in Colloid and Interface Science, 2021, 298, 102552.	7.0	12
49	Design and formulation of nano/micro-encapsulated natural bioactive compounds for food applications. , 2021, , 1-41.		11
50	An overview of biopolymer nanostructures for encapsulation of food ingredients. , 2019, , 1-35.		10
51	The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Critical Reviews in Food Science and Nutrition, 2022, 62, 3208-3231.	5.4	9
52	Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. Journal of Food Engineering, 2021, 307, 110644.	2.7	7
53	An overview of lipid-based nanostructures for encapsulation of food ingredients. , 2019, , 1-34.		5
54	An overview of specialized equipment for nanoencapsulation of food ingredients. , 2019, , 1-30.		3

55 Introduction to characterization of nanoencapsulated food ingredients. , 2020, , 1-50.	3
56 Importance of release and bioavailability studies for nanoencapsulated food ingredients. , 2020, , 1-24.	1
57 Fundamentals of food nanotechnology. , 2020, , 1-35.	1
58 Characterization and analysis of nanomaterials in foods. , 2020, , 577-653.	1
59 In vitro assays for evaluating the release of nanoencapsulated food ingredients. , 2020, , 123-177.	Ο